全态离散级数和冯-诺依曼代数上的顶点形式作用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jun Yang
{"title":"全态离散级数和冯-诺依曼代数上的顶点形式作用","authors":"Jun Yang","doi":"10.1016/j.aim.2024.109912","DOIUrl":null,"url":null,"abstract":"<div><p>A holomorphic discrete series representation <span><math><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span> of a connected semi-simple real Lie group <em>G</em> is associated with an irreducible representation <span><math><mo>(</mo><mi>π</mi><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span> of its maximal compact subgroup <em>K</em>. The underlying space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span> can be realized as certain holomorphic <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span>-valued functions on the bounded symmetric domain <span><math><mi>D</mi><mo>≅</mo><mi>G</mi><mo>/</mo><mi>K</mi></math></span>. By the Berezin quantization, we transfer <span><math><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span> into <span><math><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span>-valued functions on <span><math><mi>D</mi></math></span>. For a lattice Γ of <em>G</em>, we give the formula of a faithful normal tracial state on the commutant <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup></math></span> of the group von Neumann algebra <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>″</mo></mrow></msup></math></span>. We find the Toeplitz operators <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> that are associated with essentially bounded <span><math><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span>-valued functions <em>f</em> on <span><math><mi>Γ</mi><mo>﹨</mo><mi>D</mi></math></span> generate the entire commutant <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup></math></span>:<span><span><span><math><msup><mrow><mover><mrow><mo>{</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>|</mo><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Γ</mi><mo>﹨</mo><mi>D</mi><mo>,</mo><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo><mo>)</mo><mo>}</mo></mrow><mo>‾</mo></mover></mrow><mrow><mtext>w.o.</mtext></mrow></msup><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup><mo>.</mo></math></span></span></span> For any cuspidal automorphic form <em>f</em> defined on <em>G</em> (or <span><math><mi>D</mi></math></span>) for Γ, we find the associated Toeplitz-type operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> intertwines the actions of Γ on these square-integrable representations. Hence the composite operator of the form <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> belongs to <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup></math></span>. We prove these operators span <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Γ</mi><mo>﹨</mo><mi>D</mi><mo>)</mo></math></span> and<span><span><span><math><msup><mrow><mover><mrow><mo>〈</mo><mo>{</mo><msub><mrow><mtext>span</mtext></mrow><mrow><mi>f</mi><mo>,</mo><mi>g</mi></mrow></msub><msubsup><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>}</mo><mo>⊗</mo><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo><mo>〉</mo></mrow><mo>‾</mo></mover></mrow><mrow><mtext>w.o.</mtext></mrow></msup><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>f</mi><mo>,</mo><mi>g</mi></math></span> run through holomorphic cusp forms for Γ of same types. If Γ is an infinite conjugacy classes group, we obtain a <span><math><msub><mrow><mtext>II</mtext></mrow><mrow><mn>1</mn></mrow></msub></math></span> factor from cusp forms.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Actions of cusp forms on holomorphic discrete series and von Neumann algebras\",\"authors\":\"Jun Yang\",\"doi\":\"10.1016/j.aim.2024.109912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A holomorphic discrete series representation <span><math><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span> of a connected semi-simple real Lie group <em>G</em> is associated with an irreducible representation <span><math><mo>(</mo><mi>π</mi><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span> of its maximal compact subgroup <em>K</em>. The underlying space <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span> can be realized as certain holomorphic <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span>-valued functions on the bounded symmetric domain <span><math><mi>D</mi><mo>≅</mo><mi>G</mi><mo>/</mo><mi>K</mi></math></span>. By the Berezin quantization, we transfer <span><math><mi>B</mi><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span> into <span><math><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span>-valued functions on <span><math><mi>D</mi></math></span>. For a lattice Γ of <em>G</em>, we give the formula of a faithful normal tracial state on the commutant <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup></math></span> of the group von Neumann algebra <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>″</mo></mrow></msup></math></span>. We find the Toeplitz operators <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> that are associated with essentially bounded <span><math><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo></math></span>-valued functions <em>f</em> on <span><math><mi>Γ</mi><mo>﹨</mo><mi>D</mi></math></span> generate the entire commutant <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup></math></span>:<span><span><span><math><msup><mrow><mover><mrow><mo>{</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>|</mo><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Γ</mi><mo>﹨</mo><mi>D</mi><mo>,</mo><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo><mo>)</mo><mo>}</mo></mrow><mo>‾</mo></mover></mrow><mrow><mtext>w.o.</mtext></mrow></msup><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup><mo>.</mo></math></span></span></span> For any cuspidal automorphic form <em>f</em> defined on <em>G</em> (or <span><math><mi>D</mi></math></span>) for Γ, we find the associated Toeplitz-type operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> intertwines the actions of Γ on these square-integrable representations. Hence the composite operator of the form <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> belongs to <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup></math></span>. We prove these operators span <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Γ</mi><mo>﹨</mo><mi>D</mi><mo>)</mo></math></span> and<span><span><span><math><msup><mrow><mover><mrow><mo>〈</mo><mo>{</mo><msub><mrow><mtext>span</mtext></mrow><mrow><mi>f</mi><mo>,</mo><mi>g</mi></mrow></msub><msubsup><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>}</mo><mo>⊗</mo><mi>End</mi><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>π</mi></mrow></msub><mo>)</mo><mo>〉</mo></mrow><mo>‾</mo></mover></mrow><mrow><mtext>w.o.</mtext></mrow></msup><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>π</mi></mrow></msub><msup><mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo></math></span></span></span> where <span><math><mi>f</mi><mo>,</mo><mi>g</mi></math></span> run through holomorphic cusp forms for Γ of same types. If Γ is an infinite conjugacy classes group, we obtain a <span><math><msub><mrow><mtext>II</mtext></mrow><mrow><mn>1</mn></mrow></msub></math></span> factor from cusp forms.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824004274\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004274","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

连通半简单实李群 G 的全态离散序列表示 (Lπ,Hπ) 与其最大紧凑子群 K 的不可还原表示 (π,Vπ)相关联。底层空间 Hπ 可以实现为有界对称域 D≅G/K 上的某些全态 Vπ 值函数。对于 G 的晶格 Γ,我们给出了冯-诺依曼代数群 Lπ(Γ)″ 的换元 Lπ(Γ)′ 上的忠实正三态公式。我们发现与Γ﹨D 上本质上有界的 End(Vπ)-valued 函数 f 相关联的托普利兹算子 Tf 生成了整个换元 Lπ(Γ)′:{Tf|f∈L∞(Γ﹨D,End(Vπ))}‾w.o.=Lπ(Γ)′。对于为 Γ 定义在 G(或 D)上的任何尖顶自形形式 f,我们会发现相关的托普利兹型算子 Tf 交织了 Γ 在这些平方可积分表征上的作用。因此,Tg⁎Tf 形式的复合算子属于 Lπ(Γ)′。我们证明这些算子跨越 L∞(Γ﹨D)和〈{spanf,gTg⁎Tf}⊗End(Vπ)〉‾w.o.=Lπ(Γ)′,其中 f,g 贯穿相同类型的Γ的全态尖顶形式。如果Γ 是一个无限共轭类群,我们就可以从尖顶形式得到一个 II1 因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Actions of cusp forms on holomorphic discrete series and von Neumann algebras

A holomorphic discrete series representation (Lπ,Hπ) of a connected semi-simple real Lie group G is associated with an irreducible representation (π,Vπ) of its maximal compact subgroup K. The underlying space Hπ can be realized as certain holomorphic Vπ-valued functions on the bounded symmetric domain DG/K. By the Berezin quantization, we transfer B(Hπ) into End(Vπ)-valued functions on D. For a lattice Γ of G, we give the formula of a faithful normal tracial state on the commutant Lπ(Γ) of the group von Neumann algebra Lπ(Γ). We find the Toeplitz operators Tf that are associated with essentially bounded End(Vπ)-valued functions f on ΓD generate the entire commutant Lπ(Γ):{Tf|fL(ΓD,End(Vπ))}w.o.=Lπ(Γ). For any cuspidal automorphic form f defined on G (or D) for Γ, we find the associated Toeplitz-type operator Tf intertwines the actions of Γ on these square-integrable representations. Hence the composite operator of the form TgTf belongs to Lπ(Γ). We prove these operators span L(ΓD) and{spanf,gTgTf}End(Vπ)w.o.=Lπ(Γ), where f,g run through holomorphic cusp forms for Γ of same types. If Γ is an infinite conjugacy classes group, we obtain a II1 factor from cusp forms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信