用于生物医学应用的微藻封装技术的最新进展

IF 15.9 1区 化学 Q1 CHEMISTRY, PHYSICAL
Ana Freire da Silva, André F. Moreira, Sónia P. Miguel, Paula Coutinho
{"title":"用于生物医学应用的微藻封装技术的最新进展","authors":"Ana Freire da Silva,&nbsp;André F. Moreira,&nbsp;Sónia P. Miguel,&nbsp;Paula Coutinho","doi":"10.1016/j.cis.2024.103297","DOIUrl":null,"url":null,"abstract":"<div><p>Microalgae are microorganisms that are rich in bioactive compounds, including pigments, proteins, lipids, and polysaccharides. These compounds can be utilized for a number of biomedical purposes, including drug delivery, wound healing, and tissue engineering. Nevertheless, encapsulating microalgae cells and microalgae bioactive metabolites is vital to protect them and prevent premature degradation. This also enables the development of intelligent controlled release strategies for the bioactive compounds. This review outlines the most employed encapsulation techniques for microalgae, with a particular focus on their biomedical applications. These include ionic gelation, oil-in-water emulsions, and spray drying. Such techniques have been widely explored, due to their ability to protect sensitive compounds from degradation, enhance their stability, extend their shelf life, mask undesirable tastes or odours, control the release of bioactive compounds, and enable targeted delivery to specific sites within the body or environment. Moreover, a patent landscape analysis is also provided, allowing an overview of the microalgae encapsulation technology development applied to a variety of fields, including pharmaceuticals, cosmetics, food, and agriculture.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"333 ","pages":"Article 103297"},"PeriodicalIF":15.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001868624002203/pdfft?md5=60b0b6842081713710156014b328cde8&pid=1-s2.0-S0001868624002203-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent advances in microalgae encapsulation techniques for biomedical applications\",\"authors\":\"Ana Freire da Silva,&nbsp;André F. Moreira,&nbsp;Sónia P. Miguel,&nbsp;Paula Coutinho\",\"doi\":\"10.1016/j.cis.2024.103297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microalgae are microorganisms that are rich in bioactive compounds, including pigments, proteins, lipids, and polysaccharides. These compounds can be utilized for a number of biomedical purposes, including drug delivery, wound healing, and tissue engineering. Nevertheless, encapsulating microalgae cells and microalgae bioactive metabolites is vital to protect them and prevent premature degradation. This also enables the development of intelligent controlled release strategies for the bioactive compounds. This review outlines the most employed encapsulation techniques for microalgae, with a particular focus on their biomedical applications. These include ionic gelation, oil-in-water emulsions, and spray drying. Such techniques have been widely explored, due to their ability to protect sensitive compounds from degradation, enhance their stability, extend their shelf life, mask undesirable tastes or odours, control the release of bioactive compounds, and enable targeted delivery to specific sites within the body or environment. Moreover, a patent landscape analysis is also provided, allowing an overview of the microalgae encapsulation technology development applied to a variety of fields, including pharmaceuticals, cosmetics, food, and agriculture.</p></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"333 \",\"pages\":\"Article 103297\"},\"PeriodicalIF\":15.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0001868624002203/pdfft?md5=60b0b6842081713710156014b328cde8&pid=1-s2.0-S0001868624002203-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868624002203\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624002203","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

微藻是一种富含生物活性化合物(包括色素、蛋白质、脂类和多糖)的微生物。这些化合物可用于多种生物医学目的,包括药物输送、伤口愈合和组织工程。然而,封装微藻细胞和微藻生物活性代谢物对于保护它们和防止过早降解至关重要。这也有助于开发生物活性化合物的智能控释策略。本综述概述了最常用的微藻封装技术,尤其侧重于微藻的生物医学应用。这些技术包括离子凝胶化、水包油乳剂和喷雾干燥。由于这些技术能够保护敏感化合物不被降解、提高其稳定性、延长其保质期、掩盖不良味道或气味、控制生物活性化合物的释放,并能定向输送到体内或环境中的特定部位,因此得到了广泛的探索。此外,本报告还提供了专利概况分析,让您了解应用于制药、化妆品、食品和农业等多个领域的微藻封装技术发展概况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recent advances in microalgae encapsulation techniques for biomedical applications

Recent advances in microalgae encapsulation techniques for biomedical applications

Microalgae are microorganisms that are rich in bioactive compounds, including pigments, proteins, lipids, and polysaccharides. These compounds can be utilized for a number of biomedical purposes, including drug delivery, wound healing, and tissue engineering. Nevertheless, encapsulating microalgae cells and microalgae bioactive metabolites is vital to protect them and prevent premature degradation. This also enables the development of intelligent controlled release strategies for the bioactive compounds. This review outlines the most employed encapsulation techniques for microalgae, with a particular focus on their biomedical applications. These include ionic gelation, oil-in-water emulsions, and spray drying. Such techniques have been widely explored, due to their ability to protect sensitive compounds from degradation, enhance their stability, extend their shelf life, mask undesirable tastes or odours, control the release of bioactive compounds, and enable targeted delivery to specific sites within the body or environment. Moreover, a patent landscape analysis is also provided, allowing an overview of the microalgae encapsulation technology development applied to a variety of fields, including pharmaceuticals, cosmetics, food, and agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.50
自引率
2.60%
发文量
175
审稿时长
31 days
期刊介绍: "Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology. The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas. Typically, the articles published in this journal are written by recognized experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信