道路运输排放预测与政策制定:机器学习模型分析

IF 7.3 1区 工程技术 Q1 ENVIRONMENTAL STUDIES
{"title":"道路运输排放预测与政策制定:机器学习模型分析","authors":"","doi":"10.1016/j.trd.2024.104390","DOIUrl":null,"url":null,"abstract":"<div><p>Minimizing the detrimental effects of road transport greenhouse gas (GHG) emissions on climate change and global warming requires accurate emission forecasting. To forecast greenhouse gas emissions from industrial and civilian transportation on roads in China, we present new approaches that use data extraction and managed machine learning methods for regression and identification. Four methods are examined: decision tree, multinomial logistic regression, multivariate linear regression, and artificial neural network (ANN) multiple-layer perceptron. The findings suggest that the multiple-layer perceptron approach of ANN has superior prediction accuracy compared to other models. Ensemble modelling techniques, such as Bagging and Boosting, significantly improved the predictive performance of the developed multilayer perceptron system. The paper’s conclusions are significant for transport policymakers, regulators, and international organizations in mitigating GHG emissions.</p></div>","PeriodicalId":23277,"journal":{"name":"Transportation Research Part D-transport and Environment","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Road transportation emission prediction and policy formulation: Machine learning model analysis\",\"authors\":\"\",\"doi\":\"10.1016/j.trd.2024.104390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Minimizing the detrimental effects of road transport greenhouse gas (GHG) emissions on climate change and global warming requires accurate emission forecasting. To forecast greenhouse gas emissions from industrial and civilian transportation on roads in China, we present new approaches that use data extraction and managed machine learning methods for regression and identification. Four methods are examined: decision tree, multinomial logistic regression, multivariate linear regression, and artificial neural network (ANN) multiple-layer perceptron. The findings suggest that the multiple-layer perceptron approach of ANN has superior prediction accuracy compared to other models. Ensemble modelling techniques, such as Bagging and Boosting, significantly improved the predictive performance of the developed multilayer perceptron system. The paper’s conclusions are significant for transport policymakers, regulators, and international organizations in mitigating GHG emissions.</p></div>\",\"PeriodicalId\":23277,\"journal\":{\"name\":\"Transportation Research Part D-transport and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part D-transport and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136192092400347X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part D-transport and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136192092400347X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

要最大限度地减少道路运输温室气体(GHG)排放对气候变化和全球变暖的不利影响,就必须进行准确的排放预测。为了预测中国工业和民用道路运输的温室气体排放量,我们提出了使用数据提取和管理机器学习方法进行回归和识别的新方法。研究了四种方法:决策树、多项式逻辑回归、多元线性回归和人工神经网络(ANN)多层感知器。研究结果表明,与其他模型相比,人工神经网络的多层感知器方法具有更高的预测准确性。集合建模技术(如 Bagging 和 Boosting)显著提高了所开发的多层感知器系统的预测性能。本文的结论对于交通政策制定者、监管者和国际组织减少温室气体排放具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Road transportation emission prediction and policy formulation: Machine learning model analysis

Minimizing the detrimental effects of road transport greenhouse gas (GHG) emissions on climate change and global warming requires accurate emission forecasting. To forecast greenhouse gas emissions from industrial and civilian transportation on roads in China, we present new approaches that use data extraction and managed machine learning methods for regression and identification. Four methods are examined: decision tree, multinomial logistic regression, multivariate linear regression, and artificial neural network (ANN) multiple-layer perceptron. The findings suggest that the multiple-layer perceptron approach of ANN has superior prediction accuracy compared to other models. Ensemble modelling techniques, such as Bagging and Boosting, significantly improved the predictive performance of the developed multilayer perceptron system. The paper’s conclusions are significant for transport policymakers, regulators, and international organizations in mitigating GHG emissions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.40
自引率
9.20%
发文量
314
审稿时长
39 days
期刊介绍: Transportation Research Part D: Transport and Environment focuses on original research exploring the environmental impacts of transportation, policy responses to these impacts, and their implications for transportation system design, planning, and management. The journal comprehensively covers the interaction between transportation and the environment, ranging from local effects on specific geographical areas to global implications such as natural resource depletion and atmospheric pollution. We welcome research papers across all transportation modes, including maritime, air, and land transportation, assessing their environmental impacts broadly. Papers addressing both mobile aspects and transportation infrastructure are considered. The journal prioritizes empirical findings and policy responses of regulatory, planning, technical, or fiscal nature. Articles are policy-driven, accessible, and applicable to readers from diverse disciplines, emphasizing relevance and practicality. We encourage interdisciplinary submissions and welcome contributions from economically developing and advanced countries alike, reflecting our international orientation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信