{"title":"道路运输排放预测与政策制定:机器学习模型分析","authors":"","doi":"10.1016/j.trd.2024.104390","DOIUrl":null,"url":null,"abstract":"<div><p>Minimizing the detrimental effects of road transport greenhouse gas (GHG) emissions on climate change and global warming requires accurate emission forecasting. To forecast greenhouse gas emissions from industrial and civilian transportation on roads in China, we present new approaches that use data extraction and managed machine learning methods for regression and identification. Four methods are examined: decision tree, multinomial logistic regression, multivariate linear regression, and artificial neural network (ANN) multiple-layer perceptron. The findings suggest that the multiple-layer perceptron approach of ANN has superior prediction accuracy compared to other models. Ensemble modelling techniques, such as Bagging and Boosting, significantly improved the predictive performance of the developed multilayer perceptron system. The paper’s conclusions are significant for transport policymakers, regulators, and international organizations in mitigating GHG emissions.</p></div>","PeriodicalId":23277,"journal":{"name":"Transportation Research Part D-transport and Environment","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Road transportation emission prediction and policy formulation: Machine learning model analysis\",\"authors\":\"\",\"doi\":\"10.1016/j.trd.2024.104390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Minimizing the detrimental effects of road transport greenhouse gas (GHG) emissions on climate change and global warming requires accurate emission forecasting. To forecast greenhouse gas emissions from industrial and civilian transportation on roads in China, we present new approaches that use data extraction and managed machine learning methods for regression and identification. Four methods are examined: decision tree, multinomial logistic regression, multivariate linear regression, and artificial neural network (ANN) multiple-layer perceptron. The findings suggest that the multiple-layer perceptron approach of ANN has superior prediction accuracy compared to other models. Ensemble modelling techniques, such as Bagging and Boosting, significantly improved the predictive performance of the developed multilayer perceptron system. The paper’s conclusions are significant for transport policymakers, regulators, and international organizations in mitigating GHG emissions.</p></div>\",\"PeriodicalId\":23277,\"journal\":{\"name\":\"Transportation Research Part D-transport and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part D-transport and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136192092400347X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part D-transport and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136192092400347X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Road transportation emission prediction and policy formulation: Machine learning model analysis
Minimizing the detrimental effects of road transport greenhouse gas (GHG) emissions on climate change and global warming requires accurate emission forecasting. To forecast greenhouse gas emissions from industrial and civilian transportation on roads in China, we present new approaches that use data extraction and managed machine learning methods for regression and identification. Four methods are examined: decision tree, multinomial logistic regression, multivariate linear regression, and artificial neural network (ANN) multiple-layer perceptron. The findings suggest that the multiple-layer perceptron approach of ANN has superior prediction accuracy compared to other models. Ensemble modelling techniques, such as Bagging and Boosting, significantly improved the predictive performance of the developed multilayer perceptron system. The paper’s conclusions are significant for transport policymakers, regulators, and international organizations in mitigating GHG emissions.
期刊介绍:
Transportation Research Part D: Transport and Environment focuses on original research exploring the environmental impacts of transportation, policy responses to these impacts, and their implications for transportation system design, planning, and management. The journal comprehensively covers the interaction between transportation and the environment, ranging from local effects on specific geographical areas to global implications such as natural resource depletion and atmospheric pollution.
We welcome research papers across all transportation modes, including maritime, air, and land transportation, assessing their environmental impacts broadly. Papers addressing both mobile aspects and transportation infrastructure are considered. The journal prioritizes empirical findings and policy responses of regulatory, planning, technical, or fiscal nature. Articles are policy-driven, accessible, and applicable to readers from diverse disciplines, emphasizing relevance and practicality. We encourage interdisciplinary submissions and welcome contributions from economically developing and advanced countries alike, reflecting our international orientation.