对用于物联网恶意软件检测和取证分析的深度学习解决方案进行系统审查

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Siraj Uddin Qureshi , Jingsha He , Saima Tunio , Nafei Zhu , Ahsan Nazir , Ahsan Wajahat , Faheem Ullah , Abdul Wadud
{"title":"对用于物联网恶意软件检测和取证分析的深度学习解决方案进行系统审查","authors":"Siraj Uddin Qureshi ,&nbsp;Jingsha He ,&nbsp;Saima Tunio ,&nbsp;Nafei Zhu ,&nbsp;Ahsan Nazir ,&nbsp;Ahsan Wajahat ,&nbsp;Faheem Ullah ,&nbsp;Abdul Wadud","doi":"10.1016/j.jksuci.2024.102164","DOIUrl":null,"url":null,"abstract":"<div><p>The swift proliferation of Internet of Things (IoT) devices has presented considerable challenges in maintaining cybersecurity. As IoT ecosystems expand, they increasingly attract malware attacks, necessitating advanced detection and forensic analysis methods. This systematic review explores the application of deep learning techniques for malware detection and forensic analysis within IoT environments. The literature is organized into four distinct categories: IoT Security, Malware Forensics, Deep Learning, and Anti-Forensics. Each group was analyzed individually to identify common methodologies, techniques, and outcomes. Conducted a combined analysis to synthesize the findings across these categories, highlighting overarching trends and insights.This systematic review identifies several research gaps, including the need for comprehensive IoT-specific datasets, the integration of interdisciplinary methods, scalable real-time detection solutions, and advanced countermeasures against anti-forensic techniques. The primary issue addressed is the complexity of IoT malware and the limitations of current forensic methodologies. Through a robust methodological framework, this review synthesizes findings across these categories, highlighting common methodologies and outcomes. Identifying critical areas for future investigation, this review contributes to the advancement of cybersecurity in IoT environments, offering a comprehensive framework to guide future research and practice in developing more robust and effective security solutions.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002532/pdfft?md5=c4b7c6c2f5d782febc67d0ed9dc92f16&pid=1-s2.0-S1319157824002532-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Systematic review of deep learning solutions for malware detection and forensic analysis in IoT\",\"authors\":\"Siraj Uddin Qureshi ,&nbsp;Jingsha He ,&nbsp;Saima Tunio ,&nbsp;Nafei Zhu ,&nbsp;Ahsan Nazir ,&nbsp;Ahsan Wajahat ,&nbsp;Faheem Ullah ,&nbsp;Abdul Wadud\",\"doi\":\"10.1016/j.jksuci.2024.102164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The swift proliferation of Internet of Things (IoT) devices has presented considerable challenges in maintaining cybersecurity. As IoT ecosystems expand, they increasingly attract malware attacks, necessitating advanced detection and forensic analysis methods. This systematic review explores the application of deep learning techniques for malware detection and forensic analysis within IoT environments. The literature is organized into four distinct categories: IoT Security, Malware Forensics, Deep Learning, and Anti-Forensics. Each group was analyzed individually to identify common methodologies, techniques, and outcomes. Conducted a combined analysis to synthesize the findings across these categories, highlighting overarching trends and insights.This systematic review identifies several research gaps, including the need for comprehensive IoT-specific datasets, the integration of interdisciplinary methods, scalable real-time detection solutions, and advanced countermeasures against anti-forensic techniques. The primary issue addressed is the complexity of IoT malware and the limitations of current forensic methodologies. Through a robust methodological framework, this review synthesizes findings across these categories, highlighting common methodologies and outcomes. Identifying critical areas for future investigation, this review contributes to the advancement of cybersecurity in IoT environments, offering a comprehensive framework to guide future research and practice in developing more robust and effective security solutions.</p></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002532/pdfft?md5=c4b7c6c2f5d782febc67d0ed9dc92f16&pid=1-s2.0-S1319157824002532-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002532\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002532","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)设备的迅速扩散给维护网络安全带来了巨大挑战。随着物联网生态系统的扩展,它们越来越多地吸引恶意软件攻击,因此需要先进的检测和取证分析方法。本系统综述探讨了深度学习技术在物联网环境下恶意软件检测和取证分析中的应用。文献分为四个不同的类别:物联网安全、恶意软件取证、深度学习和反取证。对每一组进行了单独分析,以确定共同的方法、技术和结果。本系统综述确定了几项研究空白,包括需要全面的物联网特定数据集、跨学科方法的整合、可扩展的实时检测解决方案以及针对反取证技术的先进对策。研究的主要问题是物联网恶意软件的复杂性和当前取证方法的局限性。通过一个强大的方法论框架,本综述综合了这些类别的研究结果,突出了共同的方法和成果。本综述确定了未来调查的关键领域,为推进物联网环境中的网络安全做出了贡献,提供了一个全面的框架,指导未来的研究和实践,以开发更强大、更有效的安全解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic review of deep learning solutions for malware detection and forensic analysis in IoT

The swift proliferation of Internet of Things (IoT) devices has presented considerable challenges in maintaining cybersecurity. As IoT ecosystems expand, they increasingly attract malware attacks, necessitating advanced detection and forensic analysis methods. This systematic review explores the application of deep learning techniques for malware detection and forensic analysis within IoT environments. The literature is organized into four distinct categories: IoT Security, Malware Forensics, Deep Learning, and Anti-Forensics. Each group was analyzed individually to identify common methodologies, techniques, and outcomes. Conducted a combined analysis to synthesize the findings across these categories, highlighting overarching trends and insights.This systematic review identifies several research gaps, including the need for comprehensive IoT-specific datasets, the integration of interdisciplinary methods, scalable real-time detection solutions, and advanced countermeasures against anti-forensic techniques. The primary issue addressed is the complexity of IoT malware and the limitations of current forensic methodologies. Through a robust methodological framework, this review synthesizes findings across these categories, highlighting common methodologies and outcomes. Identifying critical areas for future investigation, this review contributes to the advancement of cybersecurity in IoT environments, offering a comprehensive framework to guide future research and practice in developing more robust and effective security solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信