不同钙硅比硅酸钙玻璃的碳化反应性以及与硅灰石的比较

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Chen Li , Bo Liu , Qiaomu Zheng , Yi Li , Xinping Zhu , Yuan Fang , Qingxin Zhao , Zhengwu Jiang , Jiaqi Li
{"title":"不同钙硅比硅酸钙玻璃的碳化反应性以及与硅灰石的比较","authors":"Chen Li ,&nbsp;Bo Liu ,&nbsp;Qiaomu Zheng ,&nbsp;Yi Li ,&nbsp;Xinping Zhu ,&nbsp;Yuan Fang ,&nbsp;Qingxin Zhao ,&nbsp;Zhengwu Jiang ,&nbsp;Jiaqi Li","doi":"10.1016/j.cemconres.2024.107653","DOIUrl":null,"url":null,"abstract":"<div><p>Amorphous calcium (alumino) silicates are the main component of industrial byproducts (e.g., blast furnace slag and fly ash) and can be generated by grinding silicate minerals that are abundant in steel slag and carbonated calcium silicate binders. To promote the production of CO<sub>2</sub>-activated building material from diverse materials, this study investigated the carbonation of synthetic calcium silicate glasses, model compounds of these amorphous silicates. A dissolution-controlled carbonation mechanism was revealed, in contrast with a nucleation-controlled counterpart for the carbonation of wollastonite, a model compound of silicate minerals. The former mechanism is governed by the number of Q<sup>3</sup> species in the silica layers on carbonated particle surfaces serving as sites for ionic exchange. The latter is evidenced by well-aligned CaCO<sub>3</sub> nuclei precipitating on wollastonite particles under high CaCO<sub>3</sub> supersaturation. Overall, high Ca/Si ratios favor carbonation. At Ca/Si = 1, the calcium silicate glass shows faster carbonation kinetics than wollastonite at early ages.</p></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"186 ","pages":"Article 107653"},"PeriodicalIF":10.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbonation reactivity of calcium silicate glasses at various calcium to silicate ratios and comparison with wollastonite\",\"authors\":\"Chen Li ,&nbsp;Bo Liu ,&nbsp;Qiaomu Zheng ,&nbsp;Yi Li ,&nbsp;Xinping Zhu ,&nbsp;Yuan Fang ,&nbsp;Qingxin Zhao ,&nbsp;Zhengwu Jiang ,&nbsp;Jiaqi Li\",\"doi\":\"10.1016/j.cemconres.2024.107653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Amorphous calcium (alumino) silicates are the main component of industrial byproducts (e.g., blast furnace slag and fly ash) and can be generated by grinding silicate minerals that are abundant in steel slag and carbonated calcium silicate binders. To promote the production of CO<sub>2</sub>-activated building material from diverse materials, this study investigated the carbonation of synthetic calcium silicate glasses, model compounds of these amorphous silicates. A dissolution-controlled carbonation mechanism was revealed, in contrast with a nucleation-controlled counterpart for the carbonation of wollastonite, a model compound of silicate minerals. The former mechanism is governed by the number of Q<sup>3</sup> species in the silica layers on carbonated particle surfaces serving as sites for ionic exchange. The latter is evidenced by well-aligned CaCO<sub>3</sub> nuclei precipitating on wollastonite particles under high CaCO<sub>3</sub> supersaturation. Overall, high Ca/Si ratios favor carbonation. At Ca/Si = 1, the calcium silicate glass shows faster carbonation kinetics than wollastonite at early ages.</p></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"186 \",\"pages\":\"Article 107653\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884624002345\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624002345","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

无定形钙(铝)硅酸盐是工业副产品(如高炉渣和粉煤灰)的主要成分,可通过研磨钢渣和碳化硅酸钙粘合剂中丰富的硅酸盐矿物生成。为了促进利用各种材料生产二氧化碳活性建筑材料,本研究调查了这些无定形硅酸盐的模型化合物--合成硅酸钙玻璃的碳化过程。研究揭示了一种溶解控制碳化机制,与硅酸盐矿物模型化合物硅灰石的成核控制碳化机制形成鲜明对比。前一种机制受制于碳化颗粒表面作为离子交换场所的二氧化硅层中 Q3 物种的数量。后者的证据是,在 CaCO3 过饱和度较高的情况下,硅灰石颗粒上沉淀出排列整齐的 CaCO3 核。总的来说,高 Ca/Si 比有利于碳化。当 Ca/Si = 1 时,硅酸钙玻璃在早期年龄段比硅灰石显示出更快的碳化动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbonation reactivity of calcium silicate glasses at various calcium to silicate ratios and comparison with wollastonite

Amorphous calcium (alumino) silicates are the main component of industrial byproducts (e.g., blast furnace slag and fly ash) and can be generated by grinding silicate minerals that are abundant in steel slag and carbonated calcium silicate binders. To promote the production of CO2-activated building material from diverse materials, this study investigated the carbonation of synthetic calcium silicate glasses, model compounds of these amorphous silicates. A dissolution-controlled carbonation mechanism was revealed, in contrast with a nucleation-controlled counterpart for the carbonation of wollastonite, a model compound of silicate minerals. The former mechanism is governed by the number of Q3 species in the silica layers on carbonated particle surfaces serving as sites for ionic exchange. The latter is evidenced by well-aligned CaCO3 nuclei precipitating on wollastonite particles under high CaCO3 supersaturation. Overall, high Ca/Si ratios favor carbonation. At Ca/Si = 1, the calcium silicate glass shows faster carbonation kinetics than wollastonite at early ages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信