{"title":"无负载电容下限的三级单填充 CMOS OTA","authors":"P. Manikandan","doi":"10.1016/j.vlsi.2024.102269","DOIUrl":null,"url":null,"abstract":"<div><p>This work proposes a Single Miller Capacitor (SMC) compensated three-stage Operational Transconductance Amplifier (OTA) for a wide range of load capacitors with a zero minimum load capacitor. The proposed three-stage OTA does not require a minimum load capacitor for OTA to be stable. The proposed work uses two different feed-forward transconductors to enhance the small-signal and large-signal performances of the OTA. This OTA achieves more than <span><math><mrow><mn>70</mn></mrow></math></span>° phase margin and more than <span><math><mrow><mn>10</mn><mspace></mspace><mi>dB</mi></mrow></math></span> gain margin with a load capacitor range of 0 to <span><math><mrow><mn>500</mn><mspace></mspace><mi>pF</mi></mrow></math></span> and consumes less quiescent current. The proposed OTA uses a smaller SMC of <span><math><mrow><mn>2</mn><mspace></mspace><mi>pF</mi></mrow></math></span> to drive a wide range of load capacitors. Furthermore, it saves the active area of the chip. The proposed OTA is simulated in a cadence virtuoso tool using UMC <span><math><mrow><mn>90</mn><mspace></mspace><mi>nm</mi></mrow></math></span> CMOS technology with BSIM4 MOSFETs.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A three-stage single-miller CMOS OTA with no lower load capacitor limit\",\"authors\":\"P. Manikandan\",\"doi\":\"10.1016/j.vlsi.2024.102269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work proposes a Single Miller Capacitor (SMC) compensated three-stage Operational Transconductance Amplifier (OTA) for a wide range of load capacitors with a zero minimum load capacitor. The proposed three-stage OTA does not require a minimum load capacitor for OTA to be stable. The proposed work uses two different feed-forward transconductors to enhance the small-signal and large-signal performances of the OTA. This OTA achieves more than <span><math><mrow><mn>70</mn></mrow></math></span>° phase margin and more than <span><math><mrow><mn>10</mn><mspace></mspace><mi>dB</mi></mrow></math></span> gain margin with a load capacitor range of 0 to <span><math><mrow><mn>500</mn><mspace></mspace><mi>pF</mi></mrow></math></span> and consumes less quiescent current. The proposed OTA uses a smaller SMC of <span><math><mrow><mn>2</mn><mspace></mspace><mi>pF</mi></mrow></math></span> to drive a wide range of load capacitors. Furthermore, it saves the active area of the chip. The proposed OTA is simulated in a cadence virtuoso tool using UMC <span><math><mrow><mn>90</mn><mspace></mspace><mi>nm</mi></mrow></math></span> CMOS technology with BSIM4 MOSFETs.</p></div>\",\"PeriodicalId\":54973,\"journal\":{\"name\":\"Integration-The Vlsi Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integration-The Vlsi Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167926024001330\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926024001330","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
摘要
这项研究提出了一种单米勒电容器(SMC)补偿式三级运算跨导放大器(OTA),适用于多种负载电容器,最小负载电容器为零。拟议的三级 OTA 不需要最小负载电容就能实现稳定的 OTA。建议的工作使用两个不同的前馈跨导来增强 OTA 的小信号和大信号性能。该 OTA 在 0 至 500pF 的负载电容范围内实现了 70° 以上的相位裕度和 10dB 以上的增益裕度,并消耗较少的静态电流。拟议的 OTA 使用 2pF 的较小 SMC,可驱动各种负载电容器。此外,它还节省了芯片的有效面积。我们在 cadence virtuoso 工具中使用联电 90nm CMOS 技术和 BSIM4 MOSFET 对拟议的 OTA 进行了仿真。
A three-stage single-miller CMOS OTA with no lower load capacitor limit
This work proposes a Single Miller Capacitor (SMC) compensated three-stage Operational Transconductance Amplifier (OTA) for a wide range of load capacitors with a zero minimum load capacitor. The proposed three-stage OTA does not require a minimum load capacitor for OTA to be stable. The proposed work uses two different feed-forward transconductors to enhance the small-signal and large-signal performances of the OTA. This OTA achieves more than ° phase margin and more than gain margin with a load capacitor range of 0 to and consumes less quiescent current. The proposed OTA uses a smaller SMC of to drive a wide range of load capacitors. Furthermore, it saves the active area of the chip. The proposed OTA is simulated in a cadence virtuoso tool using UMC CMOS technology with BSIM4 MOSFETs.
期刊介绍:
Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics:
Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.