{"title":"双模式碘传感:使用功能化金纳米粒子的比色和电化学检测方法","authors":"","doi":"10.1016/j.jphotochem.2024.115995","DOIUrl":null,"url":null,"abstract":"<div><p>Iodine in natural and treated waters exists mainly as iodide, iodate, and molecular iodine (I<sub>2</sub>). I<sub>2</sub> is a highly volatile and reactive species impacting biological and chemical systems. Iodine, a vital micronutrient, is essential for human and animal growth and metabolism. It also plays a crucial role in synthesising artificial adrenaline within the metabolic processes of humans and animals. It is also widely used as an antiseptic, disinfectant, and for emergency water disinfection. Moreover, iodine deficiency can result in various diseases, especially hypothyroidism and goitre. Given its critical functions, it is imperative to have a straightforward, dependable, and efficient method for monitoring iodine levels. This study introduces a simple and innovative I<sub>2</sub> detection system based on its reactivity, toxicity, and role as an indicator of oxidative conditions in water. It operates in terms of based on optical and electrochemical signal changes, utilising the anti-aggregation mechanism of gold nanoparticles (AuNPs) and 6-mercaptohexanol (MHA) for sensitive and selective detection under mild conditions. I<sub>2</sub> determination is achieved by observing the colour change in AuNPs, which is influenced by competitive interactions between MHA, I<sub>2</sub>, and AuNPs. The optical detection system, with its low detection limit (LOD=260 nM), is based on the straightforward observation of colour changes. On the other hand, the electrochemical detection method utilises changing redox peaks observed in anodic region, providing selective and sensitive I<sub>2</sub> detection (LOD=100 nM). The probe effectively detects the presence of I<sub>2</sub> in real water samples as a practical application. Moreover, the proposed method revolutionises I<sub>2</sub> detection by incorporating a smartphone for signal reading, eliminating the need for specialised equipment and significantly reducing the detection cost. This cost-effective approach carries the potential to expedite on-site and naked-eye I<sub>2</sub> detection, opening up new possibilities for research and application.</p></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1010603024005392/pdfft?md5=8a18da4a9c125490d1ebfb41b0d9d327&pid=1-s2.0-S1010603024005392-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dual-mode iodine sensing: Colorimetric and electrochemical detection methods using functionalized gold nanoparticles\",\"authors\":\"\",\"doi\":\"10.1016/j.jphotochem.2024.115995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Iodine in natural and treated waters exists mainly as iodide, iodate, and molecular iodine (I<sub>2</sub>). I<sub>2</sub> is a highly volatile and reactive species impacting biological and chemical systems. Iodine, a vital micronutrient, is essential for human and animal growth and metabolism. It also plays a crucial role in synthesising artificial adrenaline within the metabolic processes of humans and animals. It is also widely used as an antiseptic, disinfectant, and for emergency water disinfection. Moreover, iodine deficiency can result in various diseases, especially hypothyroidism and goitre. Given its critical functions, it is imperative to have a straightforward, dependable, and efficient method for monitoring iodine levels. This study introduces a simple and innovative I<sub>2</sub> detection system based on its reactivity, toxicity, and role as an indicator of oxidative conditions in water. It operates in terms of based on optical and electrochemical signal changes, utilising the anti-aggregation mechanism of gold nanoparticles (AuNPs) and 6-mercaptohexanol (MHA) for sensitive and selective detection under mild conditions. I<sub>2</sub> determination is achieved by observing the colour change in AuNPs, which is influenced by competitive interactions between MHA, I<sub>2</sub>, and AuNPs. The optical detection system, with its low detection limit (LOD=260 nM), is based on the straightforward observation of colour changes. On the other hand, the electrochemical detection method utilises changing redox peaks observed in anodic region, providing selective and sensitive I<sub>2</sub> detection (LOD=100 nM). The probe effectively detects the presence of I<sub>2</sub> in real water samples as a practical application. Moreover, the proposed method revolutionises I<sub>2</sub> detection by incorporating a smartphone for signal reading, eliminating the need for specialised equipment and significantly reducing the detection cost. This cost-effective approach carries the potential to expedite on-site and naked-eye I<sub>2</sub> detection, opening up new possibilities for research and application.</p></div>\",\"PeriodicalId\":16782,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1010603024005392/pdfft?md5=8a18da4a9c125490d1ebfb41b0d9d327&pid=1-s2.0-S1010603024005392-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1010603024005392\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024005392","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Dual-mode iodine sensing: Colorimetric and electrochemical detection methods using functionalized gold nanoparticles
Iodine in natural and treated waters exists mainly as iodide, iodate, and molecular iodine (I2). I2 is a highly volatile and reactive species impacting biological and chemical systems. Iodine, a vital micronutrient, is essential for human and animal growth and metabolism. It also plays a crucial role in synthesising artificial adrenaline within the metabolic processes of humans and animals. It is also widely used as an antiseptic, disinfectant, and for emergency water disinfection. Moreover, iodine deficiency can result in various diseases, especially hypothyroidism and goitre. Given its critical functions, it is imperative to have a straightforward, dependable, and efficient method for monitoring iodine levels. This study introduces a simple and innovative I2 detection system based on its reactivity, toxicity, and role as an indicator of oxidative conditions in water. It operates in terms of based on optical and electrochemical signal changes, utilising the anti-aggregation mechanism of gold nanoparticles (AuNPs) and 6-mercaptohexanol (MHA) for sensitive and selective detection under mild conditions. I2 determination is achieved by observing the colour change in AuNPs, which is influenced by competitive interactions between MHA, I2, and AuNPs. The optical detection system, with its low detection limit (LOD=260 nM), is based on the straightforward observation of colour changes. On the other hand, the electrochemical detection method utilises changing redox peaks observed in anodic region, providing selective and sensitive I2 detection (LOD=100 nM). The probe effectively detects the presence of I2 in real water samples as a practical application. Moreover, the proposed method revolutionises I2 detection by incorporating a smartphone for signal reading, eliminating the need for specialised equipment and significantly reducing the detection cost. This cost-effective approach carries the potential to expedite on-site and naked-eye I2 detection, opening up new possibilities for research and application.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.