{"title":"单原子修饰石墨烯协同催化剂用于增强卤化物过氧化物上的二氧化碳光催化还原能力","authors":"","doi":"10.1016/S1872-2067(24)60081-1","DOIUrl":null,"url":null,"abstract":"<div><p>Metal halide perovskite (MHP) has become one of the most promising materials for photocatalytic CO<sub>2</sub> reduction owing to the wide light absorption range, negative conduction band position and high reduction ability. However, photoreduction of CO<sub>2</sub> by MHP remains a challenge because of the slow charge separation and transfer. Herein, a cobalt single-atom modified nitrogen-doped graphene (Co-NG) cocatalyst is prepared for enhanced photocatalytic CO<sub>2</sub> reduction of bismuth-based MHP Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>. The optimal Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>/Co-NG composite exhibits the CO production rate of 123.16 μmol g<sup>–1</sup> h<sup>–1</sup>, which is 17.3 times higher than that of Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>. Moreover, the Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>/Co-NG composite photocatalyst exhibits nearly 100% CO selectivity as well as impressive long-term stability. Charge carrier dynamic characterizations such as Kelvin probe force microscopy (KPFM), single-particle PL microscope and transient absorption (TA) spectroscopy demonstrate the vital role of Co-NG cocatalyst in accelerating the transfer and separation of photogenerated charges and improving photocatalytic performance. The reaction mechanism has been demonstrated by <em>in situ</em> diffuse reflectance infrared Fourier-transform spectroscopy measurement. In addition, <em>in situ</em> X-ray photoelectron spectroscopy test and theoretical calculation reveal the reaction reactive sites and reaction energy barriers, demonstrating that the introduction of Co-NG promotes the formation of *COOH intermediate, providing sufficient evidence for the highly selective generation of CO. This work provides an effective single-atom-based cocatalyst modification strategy for photocatalytic CO<sub>2</sub> reduction and is expected to shed light on other photocatalytic applications.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":15.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-atom modified graphene cocatalyst for enhanced photocatalytic CO2 reduction on halide perovskite\",\"authors\":\"\",\"doi\":\"10.1016/S1872-2067(24)60081-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal halide perovskite (MHP) has become one of the most promising materials for photocatalytic CO<sub>2</sub> reduction owing to the wide light absorption range, negative conduction band position and high reduction ability. However, photoreduction of CO<sub>2</sub> by MHP remains a challenge because of the slow charge separation and transfer. Herein, a cobalt single-atom modified nitrogen-doped graphene (Co-NG) cocatalyst is prepared for enhanced photocatalytic CO<sub>2</sub> reduction of bismuth-based MHP Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>. The optimal Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>/Co-NG composite exhibits the CO production rate of 123.16 μmol g<sup>–1</sup> h<sup>–1</sup>, which is 17.3 times higher than that of Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>. Moreover, the Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>/Co-NG composite photocatalyst exhibits nearly 100% CO selectivity as well as impressive long-term stability. Charge carrier dynamic characterizations such as Kelvin probe force microscopy (KPFM), single-particle PL microscope and transient absorption (TA) spectroscopy demonstrate the vital role of Co-NG cocatalyst in accelerating the transfer and separation of photogenerated charges and improving photocatalytic performance. The reaction mechanism has been demonstrated by <em>in situ</em> diffuse reflectance infrared Fourier-transform spectroscopy measurement. In addition, <em>in situ</em> X-ray photoelectron spectroscopy test and theoretical calculation reveal the reaction reactive sites and reaction energy barriers, demonstrating that the introduction of Co-NG promotes the formation of *COOH intermediate, providing sufficient evidence for the highly selective generation of CO. This work provides an effective single-atom-based cocatalyst modification strategy for photocatalytic CO<sub>2</sub> reduction and is expected to shed light on other photocatalytic applications.</p></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206724600811\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600811","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
金属卤化物透辉石(MHP)具有宽广的光吸收范围、负电导带位置和高还原能力,已成为最有前景的光催化二氧化碳还原材料之一。然而,由于电荷分离和转移速度较慢,MHP 对 CO2 的光催化还原仍是一项挑战。本文制备了一种钴单原子修饰的掺氮石墨烯(Co-NG)协同催化剂,用于增强铋基 MHP Cs3Bi2Br9 的光催化 CO2 还原能力。最佳的 Cs3Bi2Br9/Co-NG 复合材料的 CO 生成率为 123.16 μmol g-1 h-1,是 Cs3Bi2Br9 的 17.3 倍。此外,Cs3Bi2Br9/Co-NG 复合光催化剂还具有近 100% 的 CO 选择性和令人印象深刻的长期稳定性。开尔文探针力显微镜(KPFM)、单颗粒聚光显微镜和瞬态吸收光谱(TA)等电荷载流子动态特性分析表明,Co-NG 助催化剂在加速光生电荷的转移和分离以及提高光催化性能方面发挥了重要作用。原位漫反射红外傅立叶变换光谱测量证明了反应机理。此外,原位 X 射线光电子能谱测试和理论计算揭示了反应活性位点和反应能垒,证明了 Co-NG 的引入促进了 *COOH 中间体的形成,为 CO 的高选择性生成提供了充分证据。这项工作为光催化还原二氧化碳提供了一种有效的基于单原子的茧催化剂改性策略,并有望为其他光催化应用带来启示。
Single-atom modified graphene cocatalyst for enhanced photocatalytic CO2 reduction on halide perovskite
Metal halide perovskite (MHP) has become one of the most promising materials for photocatalytic CO2 reduction owing to the wide light absorption range, negative conduction band position and high reduction ability. However, photoreduction of CO2 by MHP remains a challenge because of the slow charge separation and transfer. Herein, a cobalt single-atom modified nitrogen-doped graphene (Co-NG) cocatalyst is prepared for enhanced photocatalytic CO2 reduction of bismuth-based MHP Cs3Bi2Br9. The optimal Cs3Bi2Br9/Co-NG composite exhibits the CO production rate of 123.16 μmol g–1 h–1, which is 17.3 times higher than that of Cs3Bi2Br9. Moreover, the Cs3Bi2Br9/Co-NG composite photocatalyst exhibits nearly 100% CO selectivity as well as impressive long-term stability. Charge carrier dynamic characterizations such as Kelvin probe force microscopy (KPFM), single-particle PL microscope and transient absorption (TA) spectroscopy demonstrate the vital role of Co-NG cocatalyst in accelerating the transfer and separation of photogenerated charges and improving photocatalytic performance. The reaction mechanism has been demonstrated by in situ diffuse reflectance infrared Fourier-transform spectroscopy measurement. In addition, in situ X-ray photoelectron spectroscopy test and theoretical calculation reveal the reaction reactive sites and reaction energy barriers, demonstrating that the introduction of Co-NG promotes the formation of *COOH intermediate, providing sufficient evidence for the highly selective generation of CO. This work provides an effective single-atom-based cocatalyst modification strategy for photocatalytic CO2 reduction and is expected to shed light on other photocatalytic applications.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.