Megan L. Perry , Kristen M. Varney , Pratyush Tiwary , David J. Weber , Erick O. Hernández-Ochoa
{"title":"揭示 S100A1 在调节 RyR1 活性中的复杂作用:关于 \"S100A1调控RyR1的结构见解 \"的评论文章","authors":"Megan L. Perry , Kristen M. Varney , Pratyush Tiwary , David J. Weber , Erick O. Hernández-Ochoa","doi":"10.1016/j.ceca.2024.102947","DOIUrl":null,"url":null,"abstract":"<div><p>S100A1, a calcium-binding protein, plays a crucial role in regulating Ca<sup>2+</sup> signaling pathways in skeletal and cardiac myocytes via interactions with the ryanodine receptor (RyR) to affect Ca<sup>2+</sup> release and contractile performance. Biophysical studies strongly suggest that S100A1 interacts with RyRs but have been inconclusive about both the nature of this interaction and its competition with another important calcium-binding protein, calmodulin (CaM). Thus, high-resolution cryo-EM studies of RyRs in the presence of S100A1, with or without additional CaM, were needed. The elegant work by Weninger <em>et al</em>. demonstrates the interaction between S100A1 and RyR1 through various experiments and confirms that S100A1 activates RyR1 at sub-micromolar Ca<sup>2+</sup> concentrations, increasing the open probability of RyR1 channels.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"123 ","pages":"Article 102947"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the intricate role of S100A1 in regulating RyR1 activity: A commentary on “Structural insights into the regulation of RyR1 by S100A1”\",\"authors\":\"Megan L. Perry , Kristen M. Varney , Pratyush Tiwary , David J. Weber , Erick O. Hernández-Ochoa\",\"doi\":\"10.1016/j.ceca.2024.102947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>S100A1, a calcium-binding protein, plays a crucial role in regulating Ca<sup>2+</sup> signaling pathways in skeletal and cardiac myocytes via interactions with the ryanodine receptor (RyR) to affect Ca<sup>2+</sup> release and contractile performance. Biophysical studies strongly suggest that S100A1 interacts with RyRs but have been inconclusive about both the nature of this interaction and its competition with another important calcium-binding protein, calmodulin (CaM). Thus, high-resolution cryo-EM studies of RyRs in the presence of S100A1, with or without additional CaM, were needed. The elegant work by Weninger <em>et al</em>. demonstrates the interaction between S100A1 and RyR1 through various experiments and confirms that S100A1 activates RyR1 at sub-micromolar Ca<sup>2+</sup> concentrations, increasing the open probability of RyR1 channels.</p></div>\",\"PeriodicalId\":9678,\"journal\":{\"name\":\"Cell calcium\",\"volume\":\"123 \",\"pages\":\"Article 102947\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell calcium\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143416024001052\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143416024001052","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Unveiling the intricate role of S100A1 in regulating RyR1 activity: A commentary on “Structural insights into the regulation of RyR1 by S100A1”
S100A1, a calcium-binding protein, plays a crucial role in regulating Ca2+ signaling pathways in skeletal and cardiac myocytes via interactions with the ryanodine receptor (RyR) to affect Ca2+ release and contractile performance. Biophysical studies strongly suggest that S100A1 interacts with RyRs but have been inconclusive about both the nature of this interaction and its competition with another important calcium-binding protein, calmodulin (CaM). Thus, high-resolution cryo-EM studies of RyRs in the presence of S100A1, with or without additional CaM, were needed. The elegant work by Weninger et al. demonstrates the interaction between S100A1 and RyR1 through various experiments and confirms that S100A1 activates RyR1 at sub-micromolar Ca2+ concentrations, increasing the open probability of RyR1 channels.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes