熵工程:设计高性能热电材料和器件的创新战略

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Raza Moshwan , Xiao-Lei Shi , Wei-Di Liu , Jian Liu , Zhi-Gang Chen
{"title":"熵工程:设计高性能热电材料和器件的创新战略","authors":"Raza Moshwan ,&nbsp;Xiao-Lei Shi ,&nbsp;Wei-Di Liu ,&nbsp;Jian Liu ,&nbsp;Zhi-Gang Chen","doi":"10.1016/j.nantod.2024.102475","DOIUrl":null,"url":null,"abstract":"<div><p>Entropy engineering in thermoelectric materials involves a deliberate manipulation of entropy-related effects to boost performance. It revolves around designing materials to capitalize on entropy-driven changes, breaking conventional trade-offs between properties like electrical and thermal conductivity for improved efficiency. Entropy engineering fosters higher crystal symmetry, altering the Seebeck coefficient by augmenting degenerate valleys in the band structure. The introduction of significant mixing entropy mitigates strain energy, enhancing structural stability. Conversely, severe lattice distortion, atomic mass fluctuations, lattice anharmonicity, multiscale microstructures, and point defects lead to potent scattering of phonons, which suppresses thermal transport properties. This study comprehensively explores the effectiveness of entropy engineering in diverse compounds, aligning with the status and challenges in this field. These insights will guide researchers in refining material design and properties, advancing high-performance thermoelectric materials and devices to revolutionize energy conversion and stimulate sustainable technological advancements.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"58 ","pages":"Article 102475"},"PeriodicalIF":13.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1748013224003311/pdfft?md5=89698ce448bed1a383ec2dd4507eb835&pid=1-s2.0-S1748013224003311-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Entropy engineering: An innovative strategy for designing high-performance thermoelectric materials and devices\",\"authors\":\"Raza Moshwan ,&nbsp;Xiao-Lei Shi ,&nbsp;Wei-Di Liu ,&nbsp;Jian Liu ,&nbsp;Zhi-Gang Chen\",\"doi\":\"10.1016/j.nantod.2024.102475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Entropy engineering in thermoelectric materials involves a deliberate manipulation of entropy-related effects to boost performance. It revolves around designing materials to capitalize on entropy-driven changes, breaking conventional trade-offs between properties like electrical and thermal conductivity for improved efficiency. Entropy engineering fosters higher crystal symmetry, altering the Seebeck coefficient by augmenting degenerate valleys in the band structure. The introduction of significant mixing entropy mitigates strain energy, enhancing structural stability. Conversely, severe lattice distortion, atomic mass fluctuations, lattice anharmonicity, multiscale microstructures, and point defects lead to potent scattering of phonons, which suppresses thermal transport properties. This study comprehensively explores the effectiveness of entropy engineering in diverse compounds, aligning with the status and challenges in this field. These insights will guide researchers in refining material design and properties, advancing high-performance thermoelectric materials and devices to revolutionize energy conversion and stimulate sustainable technological advancements.</p></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":\"58 \",\"pages\":\"Article 102475\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1748013224003311/pdfft?md5=89698ce448bed1a383ec2dd4507eb835&pid=1-s2.0-S1748013224003311-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013224003311\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224003311","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热电材料中的熵工程涉及对熵相关效应的有意操纵,以提高性能。它围绕着设计材料来利用熵驱动的变化,打破导电性和导热性等性能之间的传统权衡,从而提高效率。熵工程可提高晶体对称性,通过增加带状结构中的退化谷来改变塞贝克系数。大量混合熵的引入可减轻应变能,增强结构稳定性。相反,严重的晶格畸变、原子质量波动、晶格非谐波、多尺度微结构和点缺陷会导致声子的强烈散射,从而抑制热传输特性。本研究全面探讨了熵工程在不同化合物中的有效性,并结合了该领域的现状和挑战。这些见解将指导研究人员完善材料设计和性能,推动高性能热电材料和器件的发展,从而彻底改变能源转换,促进可持续的技术进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy engineering: An innovative strategy for designing high-performance thermoelectric materials and devices

Entropy engineering in thermoelectric materials involves a deliberate manipulation of entropy-related effects to boost performance. It revolves around designing materials to capitalize on entropy-driven changes, breaking conventional trade-offs between properties like electrical and thermal conductivity for improved efficiency. Entropy engineering fosters higher crystal symmetry, altering the Seebeck coefficient by augmenting degenerate valleys in the band structure. The introduction of significant mixing entropy mitigates strain energy, enhancing structural stability. Conversely, severe lattice distortion, atomic mass fluctuations, lattice anharmonicity, multiscale microstructures, and point defects lead to potent scattering of phonons, which suppresses thermal transport properties. This study comprehensively explores the effectiveness of entropy engineering in diverse compounds, aligning with the status and challenges in this field. These insights will guide researchers in refining material design and properties, advancing high-performance thermoelectric materials and devices to revolutionize energy conversion and stimulate sustainable technological advancements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信