{"title":"静态半参数马尔可夫模型中高斯共轭参数的信息边界","authors":"Xiaohong Chen , Yanping Yi","doi":"10.1016/j.spl.2024.110254","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> be any univariate stationary first-order semiparametric Markov process generated from an unknown invariant marginal distribution and a bivariate Gaussian copula with unknown correlation coefficient <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. We prove that <span><math><mfenced><mrow><mn>1</mn><mo>−</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfenced></math></span> is the semiparametric efficient variance bound for estimating the correlation parameter <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in any Gaussian copula generated first-order stationary Markov models. Surprisingly, this variance bound is strictly larger than <span><math><msup><mrow><mfenced><mrow><mn>1</mn><mo>−</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></math></span> (when <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math></span>), which is the semiparametric efficient variance bound derived by Klaassen and Wellner (1997) for estimating the correlation parameter using any <span><math><mrow><mi>i</mi><mo>.</mo><mi>i</mi><mo>.</mo><mi>d</mi><mo>.</mo></mrow></math></span> data <span><math><msubsup><mrow><mrow><mo>{</mo><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> generated from a bivariate Gaussian copula with two unknown marginal distributions.</p></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"216 ","pages":"Article 110254"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224002232/pdfft?md5=b9102a8c83b499e2cb4081c8f8393ced&pid=1-s2.0-S0167715224002232-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Information bounds for Gaussian copula parameter in stationary semiparametric Markov models\",\"authors\":\"Xiaohong Chen , Yanping Yi\",\"doi\":\"10.1016/j.spl.2024.110254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> be any univariate stationary first-order semiparametric Markov process generated from an unknown invariant marginal distribution and a bivariate Gaussian copula with unknown correlation coefficient <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. We prove that <span><math><mfenced><mrow><mn>1</mn><mo>−</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfenced></math></span> is the semiparametric efficient variance bound for estimating the correlation parameter <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in any Gaussian copula generated first-order stationary Markov models. Surprisingly, this variance bound is strictly larger than <span><math><msup><mrow><mfenced><mrow><mn>1</mn><mo>−</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></math></span> (when <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math></span>), which is the semiparametric efficient variance bound derived by Klaassen and Wellner (1997) for estimating the correlation parameter using any <span><math><mrow><mi>i</mi><mo>.</mo><mi>i</mi><mo>.</mo><mi>d</mi><mo>.</mo></mrow></math></span> data <span><math><msubsup><mrow><mrow><mo>{</mo><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> generated from a bivariate Gaussian copula with two unknown marginal distributions.</p></div>\",\"PeriodicalId\":49475,\"journal\":{\"name\":\"Statistics & Probability Letters\",\"volume\":\"216 \",\"pages\":\"Article 110254\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002232/pdfft?md5=b9102a8c83b499e2cb4081c8f8393ced&pid=1-s2.0-S0167715224002232-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Probability Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002232\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002232","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Information bounds for Gaussian copula parameter in stationary semiparametric Markov models
Let be any univariate stationary first-order semiparametric Markov process generated from an unknown invariant marginal distribution and a bivariate Gaussian copula with unknown correlation coefficient . We prove that is the semiparametric efficient variance bound for estimating the correlation parameter in any Gaussian copula generated first-order stationary Markov models. Surprisingly, this variance bound is strictly larger than (when ), which is the semiparametric efficient variance bound derived by Klaassen and Wellner (1997) for estimating the correlation parameter using any data generated from a bivariate Gaussian copula with two unknown marginal distributions.
期刊介绍:
Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature.
Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission.
The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability.
The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.