{"title":"低温超临界水中丙烷氧化动力学的实验和模型研究","authors":"A. Mansfield , N. Sophonrat","doi":"10.1016/j.supflu.2024.106392","DOIUrl":null,"url":null,"abstract":"<div><p>Propane oxidation in supercritical water was investigated at iso-thermal iso-baric conditions using a batch reactor facility. Mixtures were comprised of 0.014 % propane by volume with an equivalence ratio of 0.8 and a total density of 222 mg/mL or 610 mg/mL. Reaction times ranged from 8 to 30 min for a temperature of 375ºC at 220 or 400 bar, or 400ºC at 220 bar. Major reaction products were CO and CO<sub>2</sub> and minor products were propene, acetone, ethene, ethanol, methane, methanol and hydrogen. New detailed chemical kinetic models were developed by combining and refining existing models using genetic optimization. Model predictions exhibited excellent agreement with experimental observations, and indicated that rates of H-abstraction and OH addition reactions involving alkanes and alkenes are affected by the supercritical water environment. Model accuracy was highly sensitive to the rates of CH<sub>3</sub>O<sub>2</sub>H = CH<sub>3</sub>O + OH and CH<sub>3</sub> + H<sub>2</sub>O<sub>2</sub> = CH<sub>4</sub> + HO<sub>2</sub>.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"214 ","pages":"Article 106392"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An experimental and modeling study of propane oxidation kinetics in low temperature supercritical water\",\"authors\":\"A. Mansfield , N. Sophonrat\",\"doi\":\"10.1016/j.supflu.2024.106392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Propane oxidation in supercritical water was investigated at iso-thermal iso-baric conditions using a batch reactor facility. Mixtures were comprised of 0.014 % propane by volume with an equivalence ratio of 0.8 and a total density of 222 mg/mL or 610 mg/mL. Reaction times ranged from 8 to 30 min for a temperature of 375ºC at 220 or 400 bar, or 400ºC at 220 bar. Major reaction products were CO and CO<sub>2</sub> and minor products were propene, acetone, ethene, ethanol, methane, methanol and hydrogen. New detailed chemical kinetic models were developed by combining and refining existing models using genetic optimization. Model predictions exhibited excellent agreement with experimental observations, and indicated that rates of H-abstraction and OH addition reactions involving alkanes and alkenes are affected by the supercritical water environment. Model accuracy was highly sensitive to the rates of CH<sub>3</sub>O<sub>2</sub>H = CH<sub>3</sub>O + OH and CH<sub>3</sub> + H<sub>2</sub>O<sub>2</sub> = CH<sub>4</sub> + HO<sub>2</sub>.</p></div>\",\"PeriodicalId\":17078,\"journal\":{\"name\":\"Journal of Supercritical Fluids\",\"volume\":\"214 \",\"pages\":\"Article 106392\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercritical Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0896844624002274\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624002274","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
An experimental and modeling study of propane oxidation kinetics in low temperature supercritical water
Propane oxidation in supercritical water was investigated at iso-thermal iso-baric conditions using a batch reactor facility. Mixtures were comprised of 0.014 % propane by volume with an equivalence ratio of 0.8 and a total density of 222 mg/mL or 610 mg/mL. Reaction times ranged from 8 to 30 min for a temperature of 375ºC at 220 or 400 bar, or 400ºC at 220 bar. Major reaction products were CO and CO2 and minor products were propene, acetone, ethene, ethanol, methane, methanol and hydrogen. New detailed chemical kinetic models were developed by combining and refining existing models using genetic optimization. Model predictions exhibited excellent agreement with experimental observations, and indicated that rates of H-abstraction and OH addition reactions involving alkanes and alkenes are affected by the supercritical water environment. Model accuracy was highly sensitive to the rates of CH3O2H = CH3O + OH and CH3 + H2O2 = CH4 + HO2.
期刊介绍:
The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics.
Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.