{"title":"A4 模块不变性下的最小 I 型狄拉克跷跷板和轻子生成","authors":"Labh Singh , Monal Kashav , Surender Verma","doi":"10.1016/j.nuclphysb.2024.116666","DOIUrl":null,"url":null,"abstract":"<div><p>We present a Dirac mass model based on <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> modular symmetry within Type-I seesaw framework. This extension of Standard Model requires three right-handed neutrinos and three heavy Dirac fermions superfields, all singlet under <span><math><mi>S</mi><mi>U</mi><msub><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>L</mi></mrow></msub></math></span> symmetry. The scalar sector is extended by the inclusion of a <span><math><mi>S</mi><mi>U</mi><msub><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>L</mi></mrow></msub></math></span> singlet superfield, <em>χ</em>. Here, the modular symmetry plays a crucial role as the Yukawa couplings acquire modular forms, which are expressed in terms of Dedekind eta function <span><math><mi>η</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span>. Therefore, the Yukawa couplings follow transformations akin to other matter fields, thereby obviating the necessity of additional flavon fields. The acquisition of <em>vev</em> by complex modulus <em>τ</em> leads to the breaking of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> modular symmetry. We have obtained predictions on neutrino oscillation parameters, for example, the normal hierarchy for the neutrino mass spectrum. Furthermore, we find that heavy Dirac fermions, in our model, can decay to produce observed baryon asymmetry of the Universe through Dirac leptogenesis.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1007 ","pages":"Article 116666"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324002323/pdfft?md5=cde8b6196aa22e8df5a2c85eed084c8a&pid=1-s2.0-S0550321324002323-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Minimal type-I Dirac seesaw and leptogenesis under A4 modular invariance\",\"authors\":\"Labh Singh , Monal Kashav , Surender Verma\",\"doi\":\"10.1016/j.nuclphysb.2024.116666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a Dirac mass model based on <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> modular symmetry within Type-I seesaw framework. This extension of Standard Model requires three right-handed neutrinos and three heavy Dirac fermions superfields, all singlet under <span><math><mi>S</mi><mi>U</mi><msub><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>L</mi></mrow></msub></math></span> symmetry. The scalar sector is extended by the inclusion of a <span><math><mi>S</mi><mi>U</mi><msub><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mrow><mi>L</mi></mrow></msub></math></span> singlet superfield, <em>χ</em>. Here, the modular symmetry plays a crucial role as the Yukawa couplings acquire modular forms, which are expressed in terms of Dedekind eta function <span><math><mi>η</mi><mo>(</mo><mi>τ</mi><mo>)</mo></math></span>. Therefore, the Yukawa couplings follow transformations akin to other matter fields, thereby obviating the necessity of additional flavon fields. The acquisition of <em>vev</em> by complex modulus <em>τ</em> leads to the breaking of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> modular symmetry. We have obtained predictions on neutrino oscillation parameters, for example, the normal hierarchy for the neutrino mass spectrum. Furthermore, we find that heavy Dirac fermions, in our model, can decay to produce observed baryon asymmetry of the Universe through Dirac leptogenesis.</p></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1007 \",\"pages\":\"Article 116666\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0550321324002323/pdfft?md5=cde8b6196aa22e8df5a2c85eed084c8a&pid=1-s2.0-S0550321324002323-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321324002323\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324002323","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
摘要
我们在 I 型跷跷板框架内提出了一个基于 A4 模块对称性的狄拉克质量模型。标准模型的这一扩展需要三个右手中微子和三个重狄拉克费米子超场,它们都是 SU(2)L 对称下的单子。标量部门通过加入一个 SU(2)L 单子超场 χ 得到扩展。在这里,模块对称性起着至关重要的作用,因为尤卡娃耦合获得了模块形式,用戴德金埃塔函数η(τ)表示。因此,尤卡娃耦合遵循与其他物质场类似的变换,从而无需额外的黄子场。通过复模量 τ 获取 vev 会导致 A4 模块对称性的破缺。我们获得了对中微子振荡参数的预测,例如中微子质谱的正常层次结构。此外,我们还发现,在我们的模型中,重狄拉克费米子可以通过狄拉克轻生衰变产生观测到的宇宙重子不对称性。
Minimal type-I Dirac seesaw and leptogenesis under A4 modular invariance
We present a Dirac mass model based on modular symmetry within Type-I seesaw framework. This extension of Standard Model requires three right-handed neutrinos and three heavy Dirac fermions superfields, all singlet under symmetry. The scalar sector is extended by the inclusion of a singlet superfield, χ. Here, the modular symmetry plays a crucial role as the Yukawa couplings acquire modular forms, which are expressed in terms of Dedekind eta function . Therefore, the Yukawa couplings follow transformations akin to other matter fields, thereby obviating the necessity of additional flavon fields. The acquisition of vev by complex modulus τ leads to the breaking of modular symmetry. We have obtained predictions on neutrino oscillation parameters, for example, the normal hierarchy for the neutrino mass spectrum. Furthermore, we find that heavy Dirac fermions, in our model, can decay to produce observed baryon asymmetry of the Universe through Dirac leptogenesis.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.