背景湍流对水平轴和垂直轴风力涡轮机涡流的影响

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL
W. van der Deijl , F. Schmitt , C. Sicot , S. Barre , M. Hölling , M. Obligado
{"title":"背景湍流对水平轴和垂直轴风力涡轮机涡流的影响","authors":"W. van der Deijl ,&nbsp;F. Schmitt ,&nbsp;C. Sicot ,&nbsp;S. Barre ,&nbsp;M. Hölling ,&nbsp;M. Obligado","doi":"10.1016/j.jweia.2024.105877","DOIUrl":null,"url":null,"abstract":"<div><p>We report a wind tunnel study on the wake generated by a horizontal-axis (HAWT) and a vertical-axis wind turbine (VAWT). Two scaled models, one of each type, have been tested in a wind tunnel, under low blockage and at Reynolds numbers, based on the rotor diameter <span><math><mi>D</mi></math></span>, of <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>=</mo><mn>265</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> for the HAWT and <span><math><mrow><mn>330</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> for the VAWT. The models scale with respect to the largest commercially deployed turbines is of 1/383 and 1/65.5, for the HAWT and the VAWT, respectively. Furthermore, two different inflows were tested: low and moderate turbulence conditions. For each type of turbine and inflow, different values of tip-speed ratio and <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>D</mi></mrow></msub></mrow></math></span> were tested.</p><p>Hot-wire anemometry was used to characterize the wake at different streamwise positions, exploring the range <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>x</mi><mo>/</mo><mi>D</mi><mo>&lt;</mo><mn>30</mn></mrow></math></span> for the HAWT and <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>x</mi><mo>/</mo><mi>D</mi><mo>&lt;</mo><mn>15</mn></mrow></math></span> for the VAWT.</p><p>We find that, under a low-turbulence inflow, both turbines generate significantly different wakes, characterized by the velocity deficit, wake width and the profiles of average and rms streamwise velocities. More specifically, in low-turbulence conditions, the VAWT presents faster recovery than the HAWT. Remarkably, we observe that a moderately turbulent inflow results in similar wake shapes for both turbines, presenting similar recovery and structure under all studied conditions.</p></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"253 ","pages":"Article 105877"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of background turbulence on the wakes of horizontal-axis and vertical-axis wind turbines\",\"authors\":\"W. van der Deijl ,&nbsp;F. Schmitt ,&nbsp;C. Sicot ,&nbsp;S. Barre ,&nbsp;M. Hölling ,&nbsp;M. Obligado\",\"doi\":\"10.1016/j.jweia.2024.105877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report a wind tunnel study on the wake generated by a horizontal-axis (HAWT) and a vertical-axis wind turbine (VAWT). Two scaled models, one of each type, have been tested in a wind tunnel, under low blockage and at Reynolds numbers, based on the rotor diameter <span><math><mi>D</mi></math></span>, of <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>=</mo><mn>265</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> for the HAWT and <span><math><mrow><mn>330</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> for the VAWT. The models scale with respect to the largest commercially deployed turbines is of 1/383 and 1/65.5, for the HAWT and the VAWT, respectively. Furthermore, two different inflows were tested: low and moderate turbulence conditions. For each type of turbine and inflow, different values of tip-speed ratio and <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>D</mi></mrow></msub></mrow></math></span> were tested.</p><p>Hot-wire anemometry was used to characterize the wake at different streamwise positions, exploring the range <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>x</mi><mo>/</mo><mi>D</mi><mo>&lt;</mo><mn>30</mn></mrow></math></span> for the HAWT and <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>x</mi><mo>/</mo><mi>D</mi><mo>&lt;</mo><mn>15</mn></mrow></math></span> for the VAWT.</p><p>We find that, under a low-turbulence inflow, both turbines generate significantly different wakes, characterized by the velocity deficit, wake width and the profiles of average and rms streamwise velocities. More specifically, in low-turbulence conditions, the VAWT presents faster recovery than the HAWT. Remarkably, we observe that a moderately turbulent inflow results in similar wake shapes for both turbines, presenting similar recovery and structure under all studied conditions.</p></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"253 \",\"pages\":\"Article 105877\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016761052400240X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016761052400240X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了一项关于水平轴风力涡轮机(HAWT)和垂直轴风力涡轮机(VAWT)产生的尾流的风洞研究。我们在风洞中测试了两种风力涡轮机的缩放模型,每种模型都有一个,在低阻塞和雷诺数条件下进行测试,雷诺数以转子直径 D 为基础,水平轴风力涡轮机的雷诺数为 265×103,垂直轴风力涡轮机的雷诺数为 330×103。相对于最大的商用涡轮机,HAWT 和 VAWT 的模型比例分别为 1/383 和 1/65.5。此外,还测试了两种不同的流入量:低湍流和中湍流条件。我们发现,在低湍流入流条件下,两种涡轮机产生的湍流明显不同,其特点是速度不足、湍流宽度以及平均和均方根湍流速度曲线。更具体地说,在低湍流条件下,VAWT 比 HAWT 恢复得更快。值得注意的是,我们观察到中等湍流流入会导致两台涡轮机产生相似的尾流形状,并在所有研究条件下呈现相似的恢复和结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of background turbulence on the wakes of horizontal-axis and vertical-axis wind turbines

We report a wind tunnel study on the wake generated by a horizontal-axis (HAWT) and a vertical-axis wind turbine (VAWT). Two scaled models, one of each type, have been tested in a wind tunnel, under low blockage and at Reynolds numbers, based on the rotor diameter D, of ReD=265×103 for the HAWT and 330×103 for the VAWT. The models scale with respect to the largest commercially deployed turbines is of 1/383 and 1/65.5, for the HAWT and the VAWT, respectively. Furthermore, two different inflows were tested: low and moderate turbulence conditions. For each type of turbine and inflow, different values of tip-speed ratio and ReD were tested.

Hot-wire anemometry was used to characterize the wake at different streamwise positions, exploring the range 1<x/D<30 for the HAWT and 1<x/D<15 for the VAWT.

We find that, under a low-turbulence inflow, both turbines generate significantly different wakes, characterized by the velocity deficit, wake width and the profiles of average and rms streamwise velocities. More specifically, in low-turbulence conditions, the VAWT presents faster recovery than the HAWT. Remarkably, we observe that a moderately turbulent inflow results in similar wake shapes for both turbines, presenting similar recovery and structure under all studied conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
22.90%
发文量
306
审稿时长
4.4 months
期刊介绍: The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects. Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信