Junjie Ren, Yiliang Hu, Hua Cui, Jianfeng Xu, Long Bai
{"title":"基于动态图注意网络的散射矩阵相似度度量优化,用于改进缺陷特征描述","authors":"Junjie Ren, Yiliang Hu, Hua Cui, Jianfeng Xu, Long Bai","doi":"10.1016/j.ndteint.2024.103220","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasonic scattering matrices contain rich defect information and have great potential for characterising small crack-like defects. However, experimentally measured scattering matrices often exhibit some level of distortions compared to those of the idealised defects, posing challenges for accurate defect characterisation. In this paper, defect characterisation was performed by adopting a nearest neighbour approach based on a scattering matrix database of reference defects, and the test data were contaminated by coherent measurement noise of varying amplitudes. The performance of different similarity metrics on characterisation accuracy was studied, including the Euclidean similarity, cosine similarity, Pearson correlation coefficient, and the structural similarity index. Based on a comprehensive analysis of the strengths and weaknesses of different similarity metrics, we propose a defect characterisation framework by constructing similarity graphs and leveraging advanced graph neural networks. Within the proposed approach, multiple metrics were adopted to quantify the similarity between the scattering matrices of different defects, and an improved dynamic graph attention network was developed based on a customised neighbour sampling strategy to learn the optimal metric from the graph-structured data. Experimental results show that compared to the conventional approach which adopted a globally optimal similarity metric, the proposed method can reduce the root mean squared error for the length and angle predictions by 60.5% and 67.1%, respectively.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103220"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scattering matrix similarity metric optimization for improved defect characterisation based on dynamic graph attention networks\",\"authors\":\"Junjie Ren, Yiliang Hu, Hua Cui, Jianfeng Xu, Long Bai\",\"doi\":\"10.1016/j.ndteint.2024.103220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultrasonic scattering matrices contain rich defect information and have great potential for characterising small crack-like defects. However, experimentally measured scattering matrices often exhibit some level of distortions compared to those of the idealised defects, posing challenges for accurate defect characterisation. In this paper, defect characterisation was performed by adopting a nearest neighbour approach based on a scattering matrix database of reference defects, and the test data were contaminated by coherent measurement noise of varying amplitudes. The performance of different similarity metrics on characterisation accuracy was studied, including the Euclidean similarity, cosine similarity, Pearson correlation coefficient, and the structural similarity index. Based on a comprehensive analysis of the strengths and weaknesses of different similarity metrics, we propose a defect characterisation framework by constructing similarity graphs and leveraging advanced graph neural networks. Within the proposed approach, multiple metrics were adopted to quantify the similarity between the scattering matrices of different defects, and an improved dynamic graph attention network was developed based on a customised neighbour sampling strategy to learn the optimal metric from the graph-structured data. Experimental results show that compared to the conventional approach which adopted a globally optimal similarity metric, the proposed method can reduce the root mean squared error for the length and angle predictions by 60.5% and 67.1%, respectively.</p></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"148 \",\"pages\":\"Article 103220\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524001853\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524001853","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Scattering matrix similarity metric optimization for improved defect characterisation based on dynamic graph attention networks
Ultrasonic scattering matrices contain rich defect information and have great potential for characterising small crack-like defects. However, experimentally measured scattering matrices often exhibit some level of distortions compared to those of the idealised defects, posing challenges for accurate defect characterisation. In this paper, defect characterisation was performed by adopting a nearest neighbour approach based on a scattering matrix database of reference defects, and the test data were contaminated by coherent measurement noise of varying amplitudes. The performance of different similarity metrics on characterisation accuracy was studied, including the Euclidean similarity, cosine similarity, Pearson correlation coefficient, and the structural similarity index. Based on a comprehensive analysis of the strengths and weaknesses of different similarity metrics, we propose a defect characterisation framework by constructing similarity graphs and leveraging advanced graph neural networks. Within the proposed approach, multiple metrics were adopted to quantify the similarity between the scattering matrices of different defects, and an improved dynamic graph attention network was developed based on a customised neighbour sampling strategy to learn the optimal metric from the graph-structured data. Experimental results show that compared to the conventional approach which adopted a globally optimal similarity metric, the proposed method can reduce the root mean squared error for the length and angle predictions by 60.5% and 67.1%, respectively.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.