基于脑电图的儿童多动症诊断卷积神经网络框架。

IF 4.7 3区 医学 Q1 MEDICAL INFORMATICS
Health Information Science and Systems Pub Date : 2024-08-31 eCollection Date: 2024-12-01 DOI:10.1007/s13755-024-00305-7
Umaisa Hassan, Amit Singhal
{"title":"基于脑电图的儿童多动症诊断卷积神经网络框架。","authors":"Umaisa Hassan, Amit Singhal","doi":"10.1007/s13755-024-00305-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Attention-deficit hyperactivity disorder (ADHD) stands as a significant psychiatric and neuro-developmental disorder with global prevalence. The prevalence of ADHD among school children in India is estimated to range from 5% to 8%. However, certain studies have reported higher prevalence rates, reaching as high as 11%. Utilizing electroencephalography (EEG) signals for the early detection and classification of ADHD in children is crucial.</p><p><strong>Methods: </strong>In this study, we introduce a CNN architecture characterized by its simplicity, comprising solely two convolutional layers. Our approach involves pre-processing EEG signals through a band-pass filter and segmenting them into 5-s frames. Following this, the frames undergo normalization and canonical correlation analysis. Subsequently, the proposed CNN architecture is employed for training and testing purposes.</p><p><strong>Results: </strong>Our methodology yields remarkable results, with 100% accuracy, sensitivity, and specificity when utilizing the complete 19-channel EEG signals for diagnosing ADHD in children. However, employing the entire set of EEG channels presents challenges related to the computational complexity. Therefore, we investigate the feasibility of using only frontal brain EEG channels for ADHD detection, which yields an accuracy of 99.08%.</p><p><strong>Conclusions: </strong>The proposed method yields high accuracy and is easy to implement, hence, it has the potential for widespread practical deployment to diagnose ADHD.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"12 1","pages":"44"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365922/pdf/","citationCount":"0","resultStr":"{\"title\":\"Convolutional neural network framework for EEG-based ADHD diagnosis in children.\",\"authors\":\"Umaisa Hassan, Amit Singhal\",\"doi\":\"10.1007/s13755-024-00305-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Attention-deficit hyperactivity disorder (ADHD) stands as a significant psychiatric and neuro-developmental disorder with global prevalence. The prevalence of ADHD among school children in India is estimated to range from 5% to 8%. However, certain studies have reported higher prevalence rates, reaching as high as 11%. Utilizing electroencephalography (EEG) signals for the early detection and classification of ADHD in children is crucial.</p><p><strong>Methods: </strong>In this study, we introduce a CNN architecture characterized by its simplicity, comprising solely two convolutional layers. Our approach involves pre-processing EEG signals through a band-pass filter and segmenting them into 5-s frames. Following this, the frames undergo normalization and canonical correlation analysis. Subsequently, the proposed CNN architecture is employed for training and testing purposes.</p><p><strong>Results: </strong>Our methodology yields remarkable results, with 100% accuracy, sensitivity, and specificity when utilizing the complete 19-channel EEG signals for diagnosing ADHD in children. However, employing the entire set of EEG channels presents challenges related to the computational complexity. Therefore, we investigate the feasibility of using only frontal brain EEG channels for ADHD detection, which yields an accuracy of 99.08%.</p><p><strong>Conclusions: </strong>The proposed method yields high accuracy and is easy to implement, hence, it has the potential for widespread practical deployment to diagnose ADHD.</p>\",\"PeriodicalId\":46312,\"journal\":{\"name\":\"Health Information Science and Systems\",\"volume\":\"12 1\",\"pages\":\"44\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365922/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Information Science and Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-024-00305-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-024-00305-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:注意力缺陷多动障碍(ADHD)是一种严重的精神和神经发育障碍,在全球普遍存在。据估计,注意力缺陷多动障碍在印度学龄儿童中的发病率为 5%至 8%。不过,某些研究报告称,发病率更高,达到 11%。利用脑电图(EEG)信号对儿童多动症进行早期检测和分类至关重要:在本研究中,我们介绍了一种 CNN 架构,其特点是简单,仅由两个卷积层组成。我们的方法包括通过带通滤波器预处理脑电信号,并将其分割成 5 秒钟的帧。然后,对这些帧进行归一化处理和典型相关分析。随后,提出的 CNN 架构被用于训练和测试目的:我们的方法效果显著,在利用完整的 19 通道脑电信号诊断儿童多动症时,准确率、灵敏度和特异性均达到 100%。然而,使用整套脑电图通道会带来计算复杂性方面的挑战。因此,我们研究了仅使用大脑额叶脑电图通道进行多动症检测的可行性,其准确率高达 99.08%:结论:所提出的方法准确率高且易于实施,因此有可能在实际应用中广泛用于诊断多动症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutional neural network framework for EEG-based ADHD diagnosis in children.

Purpose: Attention-deficit hyperactivity disorder (ADHD) stands as a significant psychiatric and neuro-developmental disorder with global prevalence. The prevalence of ADHD among school children in India is estimated to range from 5% to 8%. However, certain studies have reported higher prevalence rates, reaching as high as 11%. Utilizing electroencephalography (EEG) signals for the early detection and classification of ADHD in children is crucial.

Methods: In this study, we introduce a CNN architecture characterized by its simplicity, comprising solely two convolutional layers. Our approach involves pre-processing EEG signals through a band-pass filter and segmenting them into 5-s frames. Following this, the frames undergo normalization and canonical correlation analysis. Subsequently, the proposed CNN architecture is employed for training and testing purposes.

Results: Our methodology yields remarkable results, with 100% accuracy, sensitivity, and specificity when utilizing the complete 19-channel EEG signals for diagnosing ADHD in children. However, employing the entire set of EEG channels presents challenges related to the computational complexity. Therefore, we investigate the feasibility of using only frontal brain EEG channels for ADHD detection, which yields an accuracy of 99.08%.

Conclusions: The proposed method yields high accuracy and is easy to implement, hence, it has the potential for widespread practical deployment to diagnose ADHD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
5.00%
发文量
30
期刊介绍: Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信