利用棱镜-铁酮反馈缩小光谱的高功率二极管激光器。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A Muller
{"title":"利用棱镜-铁酮反馈缩小光谱的高功率二极管激光器。","authors":"A Muller","doi":"10.1063/5.0203666","DOIUrl":null,"url":null,"abstract":"<p><p>A simple method for reducing the linewidth of a diode laser while maintaining high output power is described. It is based on a dispersive prism and a thin etalon for retroreflective feedback. The etalon creates two weak external cavities that provide spectral selectivity that is periodic with a period equal to the etalon's free spectral range. The method was applied to a multimode blue laser diode, which in the absence of feedback features a linewidth of several nanometers. The spectral properties of the laser were investigated for different etalon thicknesses and operating currents and tested in the presence of temperature fluctuations. With a SF11 equilateral uncoated prism near Brewster's angle and a 0.3 mm-thick uncoated fused silica etalon, the linewidth was reduced 20-fold to 70 pm (3.6 cm-1) with an output power of 3 W at a current of 2.15 A. The largest diode current probed was 2.75 A, which resulted in a linewidth of 100 pm (5.1 cm-1) and an output power of 4 W. In contrast to the use of, for example, a volume Bragg grating, a high degree of flexibility is afforded as the same prism-etalon pair can be used across the visible and near infrared.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-power diode laser spectrally narrowed with prism-etalon feedback.\",\"authors\":\"A Muller\",\"doi\":\"10.1063/5.0203666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A simple method for reducing the linewidth of a diode laser while maintaining high output power is described. It is based on a dispersive prism and a thin etalon for retroreflective feedback. The etalon creates two weak external cavities that provide spectral selectivity that is periodic with a period equal to the etalon's free spectral range. The method was applied to a multimode blue laser diode, which in the absence of feedback features a linewidth of several nanometers. The spectral properties of the laser were investigated for different etalon thicknesses and operating currents and tested in the presence of temperature fluctuations. With a SF11 equilateral uncoated prism near Brewster's angle and a 0.3 mm-thick uncoated fused silica etalon, the linewidth was reduced 20-fold to 70 pm (3.6 cm-1) with an output power of 3 W at a current of 2.15 A. The largest diode current probed was 2.75 A, which resulted in a linewidth of 100 pm (5.1 cm-1) and an output power of 4 W. In contrast to the use of, for example, a volume Bragg grating, a high degree of flexibility is afforded as the same prism-etalon pair can be used across the visible and near infrared.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0203666\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0203666","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种在保持高输出功率的同时减小二极管激光器线宽的简单方法。该方法基于一个色散棱镜和一个用于逆反射反馈的薄等离子体。蚀刻管产生两个微弱的外部空腔,提供周期性的光谱选择性,其周期等于蚀刻管的自由光谱范围。该方法应用于多模蓝色激光二极管,在没有反馈的情况下,该二极管的线宽为几纳米。针对不同的蚀刻片厚度和工作电流,对激光器的光谱特性进行了研究,并在存在温度波动的情况下进行了测试。使用接近布儒斯特角的 SF11 等边无涂层棱镜和 0.3 毫米厚的无涂层熔融石英蚀刻管时,线宽减小了 20 倍,达到 70 pm(3.6 cm-1),输出功率为 3 W,电流为 2.15 A。与使用体布拉格光栅等方法相比,这种方法具有很高的灵活性,因为同一棱镜-石英对可用于可见光和近红外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-power diode laser spectrally narrowed with prism-etalon feedback.

A simple method for reducing the linewidth of a diode laser while maintaining high output power is described. It is based on a dispersive prism and a thin etalon for retroreflective feedback. The etalon creates two weak external cavities that provide spectral selectivity that is periodic with a period equal to the etalon's free spectral range. The method was applied to a multimode blue laser diode, which in the absence of feedback features a linewidth of several nanometers. The spectral properties of the laser were investigated for different etalon thicknesses and operating currents and tested in the presence of temperature fluctuations. With a SF11 equilateral uncoated prism near Brewster's angle and a 0.3 mm-thick uncoated fused silica etalon, the linewidth was reduced 20-fold to 70 pm (3.6 cm-1) with an output power of 3 W at a current of 2.15 A. The largest diode current probed was 2.75 A, which resulted in a linewidth of 100 pm (5.1 cm-1) and an output power of 4 W. In contrast to the use of, for example, a volume Bragg grating, a high degree of flexibility is afforded as the same prism-etalon pair can be used across the visible and near infrared.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信