多聚维他命接枝脱细胞牛肋间动脉作为血管再生小直径动脉的新替代品。

IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Regenerative Biomaterials Pub Date : 2024-08-22 eCollection Date: 2024-01-01 DOI:10.1093/rb/rbae098
Yuan Xia, Zilong Rao, Simin Wu, Jiayao Huang, Haiyun Zhou, Hanzhao Li, Hui Zheng, Daxin Guo, Daping Quan, Jing-Song Ou, Ying Bai, Yunqi Liu
{"title":"多聚维他命接枝脱细胞牛肋间动脉作为血管再生小直径动脉的新替代品。","authors":"Yuan Xia, Zilong Rao, Simin Wu, Jiayao Huang, Haiyun Zhou, Hanzhao Li, Hui Zheng, Daxin Guo, Daping Quan, Jing-Song Ou, Ying Bai, Yunqi Liu","doi":"10.1093/rb/rbae098","DOIUrl":null,"url":null,"abstract":"<p><p>Coronary artery bypass grafting is acknowledged as a major clinical approach for treatment of severe coronary artery atherosclerotic heart disease. This procedure typically requires autologous small-diameter vascular grafts. However, the limited availability of the donor vessels and associated trauma during tissue harvest underscore the necessity for artificial arterial alternatives. Herein, decellularized bovine intercostal arteries were successfully fabricated with lengths ranging from 15 to 30 cm, which also closely match the inner diameters of human coronary arteries. These decellularized arterial grafts exhibited great promise following poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) grafting from the inner surface. Such surface modification endowed the decellularized arteries with superior mechanical strength, enhanced anticoagulant properties and improved biocompatibility, compared to the decellularized bovine intercostal arteries alone, or even those decellularized grafts modified with both heparin and vascular endothelial growth factor. After replacement of the carotid arteries in rabbits, all surface-modified vascular grafts have shown good patency within 30 days post-implantation. Notably, strong signal was observed after α-SMA immunofluorescence staining on the PMPC-grafted vessels, indicating significant potential for regenerating the vascular smooth muscle layer and thereby restoring full structures of the artery. Consequently, the decellularized bovine intercostal arteries surface modified by PMPC can emerge as a potent candidate for small-diameter artificial blood vessels, and have shown great promise to serve as viable substitutes of arterial autografts.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368410/pdf/","citationCount":"0","resultStr":"{\"title\":\"Polyzwitterion-grafted decellularized bovine intercostal arteries as new substitutes of small-diameter arteries for vascular regeneration.\",\"authors\":\"Yuan Xia, Zilong Rao, Simin Wu, Jiayao Huang, Haiyun Zhou, Hanzhao Li, Hui Zheng, Daxin Guo, Daping Quan, Jing-Song Ou, Ying Bai, Yunqi Liu\",\"doi\":\"10.1093/rb/rbae098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coronary artery bypass grafting is acknowledged as a major clinical approach for treatment of severe coronary artery atherosclerotic heart disease. This procedure typically requires autologous small-diameter vascular grafts. However, the limited availability of the donor vessels and associated trauma during tissue harvest underscore the necessity for artificial arterial alternatives. Herein, decellularized bovine intercostal arteries were successfully fabricated with lengths ranging from 15 to 30 cm, which also closely match the inner diameters of human coronary arteries. These decellularized arterial grafts exhibited great promise following poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) grafting from the inner surface. Such surface modification endowed the decellularized arteries with superior mechanical strength, enhanced anticoagulant properties and improved biocompatibility, compared to the decellularized bovine intercostal arteries alone, or even those decellularized grafts modified with both heparin and vascular endothelial growth factor. After replacement of the carotid arteries in rabbits, all surface-modified vascular grafts have shown good patency within 30 days post-implantation. Notably, strong signal was observed after α-SMA immunofluorescence staining on the PMPC-grafted vessels, indicating significant potential for regenerating the vascular smooth muscle layer and thereby restoring full structures of the artery. Consequently, the decellularized bovine intercostal arteries surface modified by PMPC can emerge as a potent candidate for small-diameter artificial blood vessels, and have shown great promise to serve as viable substitutes of arterial autografts.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368410/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbae098\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae098","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

冠状动脉搭桥术是公认的治疗严重冠状动脉粥样硬化性心脏病的主要临床方法。这种手术通常需要自体小直径血管移植物。然而,供体血管的有限性和组织采集过程中的相关创伤凸显了人工动脉替代品的必要性。在本文中,脱细胞牛肋间动脉被成功制造出来,长度从15厘米到30厘米不等,与人类冠状动脉的内径非常接近。这些脱细胞动脉移植物在内表面进行聚(2-甲基丙烯酰氧乙基磷酰胆碱)(PMPC)接枝后显示出巨大的前景。与单独脱细胞的牛肋间动脉相比,甚至与同时使用肝素和血管内皮生长因子修饰的脱细胞移植物相比,这种表面修饰使脱细胞动脉具有更高的机械强度、更强的抗凝特性和更好的生物相容性。在兔子体内置换颈动脉后,所有表面修饰的血管移植物在植入后 30 天内都显示出良好的通畅性。值得注意的是,在对 PMPC 移植血管进行α-SMA 免疫荧光染色后观察到了强信号,这表明血管平滑肌层的再生潜力巨大,从而恢复了动脉的完整结构。因此,经 PMPC 表面修饰的脱细胞牛肋间动脉可作为小直径人造血管的有效候选材料,并有望成为动脉自体移植的可行替代物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polyzwitterion-grafted decellularized bovine intercostal arteries as new substitutes of small-diameter arteries for vascular regeneration.

Coronary artery bypass grafting is acknowledged as a major clinical approach for treatment of severe coronary artery atherosclerotic heart disease. This procedure typically requires autologous small-diameter vascular grafts. However, the limited availability of the donor vessels and associated trauma during tissue harvest underscore the necessity for artificial arterial alternatives. Herein, decellularized bovine intercostal arteries were successfully fabricated with lengths ranging from 15 to 30 cm, which also closely match the inner diameters of human coronary arteries. These decellularized arterial grafts exhibited great promise following poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) grafting from the inner surface. Such surface modification endowed the decellularized arteries with superior mechanical strength, enhanced anticoagulant properties and improved biocompatibility, compared to the decellularized bovine intercostal arteries alone, or even those decellularized grafts modified with both heparin and vascular endothelial growth factor. After replacement of the carotid arteries in rabbits, all surface-modified vascular grafts have shown good patency within 30 days post-implantation. Notably, strong signal was observed after α-SMA immunofluorescence staining on the PMPC-grafted vessels, indicating significant potential for regenerating the vascular smooth muscle layer and thereby restoring full structures of the artery. Consequently, the decellularized bovine intercostal arteries surface modified by PMPC can emerge as a potent candidate for small-diameter artificial blood vessels, and have shown great promise to serve as viable substitutes of arterial autografts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Regenerative Biomaterials
Regenerative Biomaterials Materials Science-Biomaterials
CiteScore
7.90
自引率
16.40%
发文量
92
审稿时长
10 weeks
期刊介绍: Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信