{"title":"雄性大鼠心动周期中心房-心室机械相互作用的生理学模拟。","authors":"Alexandr Balakin, Yuri Protsenko","doi":"10.1007/s00424-024-03015-x","DOIUrl":null,"url":null,"abstract":"<p><p>Adequate assessment of the contribution of the different phases of atrial mechanical activity to the value of ejection volume and pressure developed by the ventricle is a complex and important experimental and clinical problem. A new method and an effective algorithm for controlling the interaction of isolated rat right atrial and right ventricular strips during the cardiac cycle were developed and tested in a physiological experiment. The presented functional model is flexible and has the ability to change many parameters (temperature, pacing rate, excitation delay, pre- and afterload levels, transfer length, and force scaling coefficients) to simulate different types of cardiac pathologies. For the first time, the contribution of the duration of the excitation delay of the right ventricular strips to the amount of work performed by the muscles during the cardiac cycle was evaluated. Changes in the onset of atrial systole and the delay in activation of ventricular contraction may lead to a reduction in cardiac stroke volume, which should be considered in the diagnosis and treatment of cardiovascular disease and in resynchronization therapy.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physiological simulation of atrial-ventricular mechanical interaction in male rats during the cardiac cycle.\",\"authors\":\"Alexandr Balakin, Yuri Protsenko\",\"doi\":\"10.1007/s00424-024-03015-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adequate assessment of the contribution of the different phases of atrial mechanical activity to the value of ejection volume and pressure developed by the ventricle is a complex and important experimental and clinical problem. A new method and an effective algorithm for controlling the interaction of isolated rat right atrial and right ventricular strips during the cardiac cycle were developed and tested in a physiological experiment. The presented functional model is flexible and has the ability to change many parameters (temperature, pacing rate, excitation delay, pre- and afterload levels, transfer length, and force scaling coefficients) to simulate different types of cardiac pathologies. For the first time, the contribution of the duration of the excitation delay of the right ventricular strips to the amount of work performed by the muscles during the cardiac cycle was evaluated. Changes in the onset of atrial systole and the delay in activation of ventricular contraction may lead to a reduction in cardiac stroke volume, which should be considered in the diagnosis and treatment of cardiovascular disease and in resynchronization therapy.</p>\",\"PeriodicalId\":19954,\"journal\":{\"name\":\"Pflugers Archiv : European journal of physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pflugers Archiv : European journal of physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00424-024-03015-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-024-03015-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Physiological simulation of atrial-ventricular mechanical interaction in male rats during the cardiac cycle.
Adequate assessment of the contribution of the different phases of atrial mechanical activity to the value of ejection volume and pressure developed by the ventricle is a complex and important experimental and clinical problem. A new method and an effective algorithm for controlling the interaction of isolated rat right atrial and right ventricular strips during the cardiac cycle were developed and tested in a physiological experiment. The presented functional model is flexible and has the ability to change many parameters (temperature, pacing rate, excitation delay, pre- and afterload levels, transfer length, and force scaling coefficients) to simulate different types of cardiac pathologies. For the first time, the contribution of the duration of the excitation delay of the right ventricular strips to the amount of work performed by the muscles during the cardiac cycle was evaluated. Changes in the onset of atrial systole and the delay in activation of ventricular contraction may lead to a reduction in cardiac stroke volume, which should be considered in the diagnosis and treatment of cardiovascular disease and in resynchronization therapy.
期刊介绍:
Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.