{"title":"维生素 K3 衍生物可抑制针对侵袭性前列腺癌细胞的雄激素受体信号传导。","authors":"Somaiah Chinnapaka, Velavan Bakthavachalam, Subramanyam Dasari, Jhishnuraj Kannan, Sworaj Sapkota, Raj Kumar, Gnanasekar Munirathinam","doi":"10.1002/biof.2117","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PCa) is the second critical cause of cancer-related deaths, with African Americans dying at higher rates in the U.S. The main reasons for the higher mortality rate are ethnic differences and lack of understanding of prostate cancer biology and affordable treatments, as well as the financial burden of African American men to obtain the most effective and safe treatments. The effect of micronutrients, including Vitamin K, on various cancer cell lines has been widely studied, but the potential anticancer effect of VK3-OCH3, an analog of vitamin K3 (Menadione), on African American prostate cancer has not been evaluated. In this study, we compared the anticancer effect of VK3-OCH3 on targeting African American derived PCa cell lines namely RC77-T and MDA-PCa-2b. Our results show that VK3-OCH3 significantly inhibits the proliferation of both RC77-T and MDA-PCa-2b African American PCa cells and promotes apoptosis, and the underlying mechanism of cell death appears to be similar in both the cell lines. Notably, VK3-OCH3 inhibits colony-forming ability and induces apoptosis by blocking the cell cycle at G0 in African American PCa cells. VK3-OCH3 also acts as an anti-metastatic agent by inhibiting the migration ability of the metastatic properties of African American PCa cells. The cell death of African American PCa cells mediated by VK3-OCH3 is associated with the production of free radicals, such as intracellular and mitochondrial reactive oxygen species (ROS). Interestingly, antioxidants such as N-Acetylcysteine (NAC) and Glutathione (GSH) effectively negated the oxidative stress induced by VK3-OCH3 on PCa cell lines derived from African American patients. Of note, VK3-OCH3 reduces androgen receptor and prostate-specific antigen expression in these PCa cells. Furthermore, molecular dynamic studies reiterated that VK3-OCH3 strongly binds to the androgen receptor, suggesting that the androgen receptor is the potential molecular target of VK3-OCH3. In addition, Western blot analysis showed that VK3-OCH3 reduces the expression of androgen receptor, TRX2, and anti-apoptotic signaling molecules such as Bcl-2 and TCTP in the MDA-PCa-2b metastatic PCa cellular model. In conclusion, our results suggested that VK3-OCH3 is a promising anticancer agent that could potentially reduce the mortality rates of African American PCa patients, warranting further preclinical and translational studies.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vitamin K3 derivative inhibits androgen receptor signaling in targeting aggressive prostate cancer cells.\",\"authors\":\"Somaiah Chinnapaka, Velavan Bakthavachalam, Subramanyam Dasari, Jhishnuraj Kannan, Sworaj Sapkota, Raj Kumar, Gnanasekar Munirathinam\",\"doi\":\"10.1002/biof.2117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer (PCa) is the second critical cause of cancer-related deaths, with African Americans dying at higher rates in the U.S. The main reasons for the higher mortality rate are ethnic differences and lack of understanding of prostate cancer biology and affordable treatments, as well as the financial burden of African American men to obtain the most effective and safe treatments. The effect of micronutrients, including Vitamin K, on various cancer cell lines has been widely studied, but the potential anticancer effect of VK3-OCH3, an analog of vitamin K3 (Menadione), on African American prostate cancer has not been evaluated. In this study, we compared the anticancer effect of VK3-OCH3 on targeting African American derived PCa cell lines namely RC77-T and MDA-PCa-2b. Our results show that VK3-OCH3 significantly inhibits the proliferation of both RC77-T and MDA-PCa-2b African American PCa cells and promotes apoptosis, and the underlying mechanism of cell death appears to be similar in both the cell lines. Notably, VK3-OCH3 inhibits colony-forming ability and induces apoptosis by blocking the cell cycle at G0 in African American PCa cells. VK3-OCH3 also acts as an anti-metastatic agent by inhibiting the migration ability of the metastatic properties of African American PCa cells. The cell death of African American PCa cells mediated by VK3-OCH3 is associated with the production of free radicals, such as intracellular and mitochondrial reactive oxygen species (ROS). Interestingly, antioxidants such as N-Acetylcysteine (NAC) and Glutathione (GSH) effectively negated the oxidative stress induced by VK3-OCH3 on PCa cell lines derived from African American patients. Of note, VK3-OCH3 reduces androgen receptor and prostate-specific antigen expression in these PCa cells. Furthermore, molecular dynamic studies reiterated that VK3-OCH3 strongly binds to the androgen receptor, suggesting that the androgen receptor is the potential molecular target of VK3-OCH3. In addition, Western blot analysis showed that VK3-OCH3 reduces the expression of androgen receptor, TRX2, and anti-apoptotic signaling molecules such as Bcl-2 and TCTP in the MDA-PCa-2b metastatic PCa cellular model. In conclusion, our results suggested that VK3-OCH3 is a promising anticancer agent that could potentially reduce the mortality rates of African American PCa patients, warranting further preclinical and translational studies.</p>\",\"PeriodicalId\":8923,\"journal\":{\"name\":\"BioFactors\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioFactors\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/biof.2117\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/biof.2117","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Vitamin K3 derivative inhibits androgen receptor signaling in targeting aggressive prostate cancer cells.
Prostate cancer (PCa) is the second critical cause of cancer-related deaths, with African Americans dying at higher rates in the U.S. The main reasons for the higher mortality rate are ethnic differences and lack of understanding of prostate cancer biology and affordable treatments, as well as the financial burden of African American men to obtain the most effective and safe treatments. The effect of micronutrients, including Vitamin K, on various cancer cell lines has been widely studied, but the potential anticancer effect of VK3-OCH3, an analog of vitamin K3 (Menadione), on African American prostate cancer has not been evaluated. In this study, we compared the anticancer effect of VK3-OCH3 on targeting African American derived PCa cell lines namely RC77-T and MDA-PCa-2b. Our results show that VK3-OCH3 significantly inhibits the proliferation of both RC77-T and MDA-PCa-2b African American PCa cells and promotes apoptosis, and the underlying mechanism of cell death appears to be similar in both the cell lines. Notably, VK3-OCH3 inhibits colony-forming ability and induces apoptosis by blocking the cell cycle at G0 in African American PCa cells. VK3-OCH3 also acts as an anti-metastatic agent by inhibiting the migration ability of the metastatic properties of African American PCa cells. The cell death of African American PCa cells mediated by VK3-OCH3 is associated with the production of free radicals, such as intracellular and mitochondrial reactive oxygen species (ROS). Interestingly, antioxidants such as N-Acetylcysteine (NAC) and Glutathione (GSH) effectively negated the oxidative stress induced by VK3-OCH3 on PCa cell lines derived from African American patients. Of note, VK3-OCH3 reduces androgen receptor and prostate-specific antigen expression in these PCa cells. Furthermore, molecular dynamic studies reiterated that VK3-OCH3 strongly binds to the androgen receptor, suggesting that the androgen receptor is the potential molecular target of VK3-OCH3. In addition, Western blot analysis showed that VK3-OCH3 reduces the expression of androgen receptor, TRX2, and anti-apoptotic signaling molecules such as Bcl-2 and TCTP in the MDA-PCa-2b metastatic PCa cellular model. In conclusion, our results suggested that VK3-OCH3 is a promising anticancer agent that could potentially reduce the mortality rates of African American PCa patients, warranting further preclinical and translational studies.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.