Tom Fringand, Loic Mace, Isabelle Cheylan, Marien Lenoir, Julien Favier
{"title":"分析原生主动脉瓣、患者特异性尾崎手术和生物人工瓣膜的流体-结构相互作用机制。","authors":"Tom Fringand, Loic Mace, Isabelle Cheylan, Marien Lenoir, Julien Favier","doi":"10.1007/s10439-024-03566-1","DOIUrl":null,"url":null,"abstract":"<div><p>The Ozaki procedure is a surgical technique which avoids to implant foreign aortic valve prostheses in human heart, using the patient’s own pericardium. Although this approach has well-identified benefits, it is still a topic of debate in the cardiac surgical community, which prevents its larger use to treat valve pathologies. This is linked to the actual lack of knowledge regarding the dynamics of tissue deformations and surrounding blood flow for this autograft pericardial valve. So far, there is no numerical study examining the coupling between the blood flow characteristics and the Ozaki leaflets dynamics. To fill this gap, we propose here a comprehensive comparison of various performance criteria between a healthy native valve, its pericardium-based counterpart, and a bioprosthetic solution, this is done using a three-dimensional fluid–structure interaction solver. Our findings reveal similar physiological dynamics between the valves but with the emergence of fluttering for the Ozaki leaflets and higher velocity and wall shear stress for the bioprosthetic heart valve.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Fluid–Structure Interaction Mechanisms for a Native Aortic Valve, Patient-Specific Ozaki Procedure, and a Bioprosthetic Valve\",\"authors\":\"Tom Fringand, Loic Mace, Isabelle Cheylan, Marien Lenoir, Julien Favier\",\"doi\":\"10.1007/s10439-024-03566-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Ozaki procedure is a surgical technique which avoids to implant foreign aortic valve prostheses in human heart, using the patient’s own pericardium. Although this approach has well-identified benefits, it is still a topic of debate in the cardiac surgical community, which prevents its larger use to treat valve pathologies. This is linked to the actual lack of knowledge regarding the dynamics of tissue deformations and surrounding blood flow for this autograft pericardial valve. So far, there is no numerical study examining the coupling between the blood flow characteristics and the Ozaki leaflets dynamics. To fill this gap, we propose here a comprehensive comparison of various performance criteria between a healthy native valve, its pericardium-based counterpart, and a bioprosthetic solution, this is done using a three-dimensional fluid–structure interaction solver. Our findings reveal similar physiological dynamics between the valves but with the emergence of fluttering for the Ozaki leaflets and higher velocity and wall shear stress for the bioprosthetic heart valve.</p></div>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10439-024-03566-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10439-024-03566-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Analysis of Fluid–Structure Interaction Mechanisms for a Native Aortic Valve, Patient-Specific Ozaki Procedure, and a Bioprosthetic Valve
The Ozaki procedure is a surgical technique which avoids to implant foreign aortic valve prostheses in human heart, using the patient’s own pericardium. Although this approach has well-identified benefits, it is still a topic of debate in the cardiac surgical community, which prevents its larger use to treat valve pathologies. This is linked to the actual lack of knowledge regarding the dynamics of tissue deformations and surrounding blood flow for this autograft pericardial valve. So far, there is no numerical study examining the coupling between the blood flow characteristics and the Ozaki leaflets dynamics. To fill this gap, we propose here a comprehensive comparison of various performance criteria between a healthy native valve, its pericardium-based counterpart, and a bioprosthetic solution, this is done using a three-dimensional fluid–structure interaction solver. Our findings reveal similar physiological dynamics between the valves but with the emergence of fluttering for the Ozaki leaflets and higher velocity and wall shear stress for the bioprosthetic heart valve.
期刊介绍:
Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.