纳米粒子变形性对多尺度生物传输的影响

IF 15.2 1区 医学 Q1 PHARMACOLOGY & PHARMACY
Hytham H. Gadalla , Zhongyue Yuan , Ziang Chen , Faisal Alsuwayyid , Subham Das , Harsa Mitra , Arezoo M. Ardekani , Ryan Wagner , Yoon Yeo
{"title":"纳米粒子变形性对多尺度生物传输的影响","authors":"Hytham H. Gadalla ,&nbsp;Zhongyue Yuan ,&nbsp;Ziang Chen ,&nbsp;Faisal Alsuwayyid ,&nbsp;Subham Das ,&nbsp;Harsa Mitra ,&nbsp;Arezoo M. Ardekani ,&nbsp;Ryan Wagner ,&nbsp;Yoon Yeo","doi":"10.1016/j.addr.2024.115445","DOIUrl":null,"url":null,"abstract":"<div><p>Deformability is one of the critical attributes of nanoparticle (NP) drug carriers, along with size, shape, and surface properties. It affects various aspects of NP biotransport, ranging from circulation and biodistribution to interactions with biological barriers and target cells. Recent studies report additional roles of NP deformability in biotransport processes, including protein corona formation, intracellular trafficking, and organelle distribution. This review focuses on the literature published in the past five years to update our understanding of NP deformability and its effect on NP biotransport. We introduce different methods of modulating and evaluating NP deformability and showcase recent studies that compare a series of NPs in their performance in biotransport events at all levels, highlighting the consensus and disagreement of the findings. It concludes with a perspective on the intricacy of systematic investigation of NP deformability and future opportunities to advance its control toward optimal drug delivery.</p></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"213 ","pages":"Article 115445"},"PeriodicalIF":15.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of nanoparticle deformability on multiscale biotransport\",\"authors\":\"Hytham H. Gadalla ,&nbsp;Zhongyue Yuan ,&nbsp;Ziang Chen ,&nbsp;Faisal Alsuwayyid ,&nbsp;Subham Das ,&nbsp;Harsa Mitra ,&nbsp;Arezoo M. Ardekani ,&nbsp;Ryan Wagner ,&nbsp;Yoon Yeo\",\"doi\":\"10.1016/j.addr.2024.115445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deformability is one of the critical attributes of nanoparticle (NP) drug carriers, along with size, shape, and surface properties. It affects various aspects of NP biotransport, ranging from circulation and biodistribution to interactions with biological barriers and target cells. Recent studies report additional roles of NP deformability in biotransport processes, including protein corona formation, intracellular trafficking, and organelle distribution. This review focuses on the literature published in the past five years to update our understanding of NP deformability and its effect on NP biotransport. We introduce different methods of modulating and evaluating NP deformability and showcase recent studies that compare a series of NPs in their performance in biotransport events at all levels, highlighting the consensus and disagreement of the findings. It concludes with a perspective on the intricacy of systematic investigation of NP deformability and future opportunities to advance its control toward optimal drug delivery.</p></div>\",\"PeriodicalId\":7254,\"journal\":{\"name\":\"Advanced drug delivery reviews\",\"volume\":\"213 \",\"pages\":\"Article 115445\"},\"PeriodicalIF\":15.2000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced drug delivery reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169409X24002679\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced drug delivery reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169409X24002679","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

与尺寸、形状和表面特性一样,可变形性也是纳米粒子药物载体的关键属性之一。它影响着 NP 生物转运的各个方面,从循环和生物分布到与生物屏障和靶细胞的相互作用。最近的研究报告指出了 NP 变形性在生物转运过程中的其他作用,包括蛋白质日冕的形成、细胞内转运和细胞器分布。本综述侧重于过去五年中发表的文献,以更新我们对NP变形性及其对NP生物转运影响的认识。我们介绍了调节和评估 NP 变形性的不同方法,并展示了最近的一些研究,这些研究比较了一系列 NP 在各级生物转运事件中的表现,强调了研究结果的共识和分歧。最后,本研究透视了对 NP 变形性进行系统研究的复杂性,以及推进其控制以实现最佳药物输送的未来机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of nanoparticle deformability on multiscale biotransport

Effects of nanoparticle deformability on multiscale biotransport

Deformability is one of the critical attributes of nanoparticle (NP) drug carriers, along with size, shape, and surface properties. It affects various aspects of NP biotransport, ranging from circulation and biodistribution to interactions with biological barriers and target cells. Recent studies report additional roles of NP deformability in biotransport processes, including protein corona formation, intracellular trafficking, and organelle distribution. This review focuses on the literature published in the past five years to update our understanding of NP deformability and its effect on NP biotransport. We introduce different methods of modulating and evaluating NP deformability and showcase recent studies that compare a series of NPs in their performance in biotransport events at all levels, highlighting the consensus and disagreement of the findings. It concludes with a perspective on the intricacy of systematic investigation of NP deformability and future opportunities to advance its control toward optimal drug delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.10
自引率
5.00%
发文量
294
审稿时长
15.1 weeks
期刊介绍: The aim of the Journal is to provide a forum for the critical analysis of advanced drug and gene delivery systems and their applications in human and veterinary medicine. The Journal has a broad scope, covering the key issues for effective drug and gene delivery, from administration to site-specific delivery. In general, the Journal publishes review articles in a Theme Issue format. Each Theme Issue provides a comprehensive and critical examination of current and emerging research on the design and development of advanced drug and gene delivery systems and their application to experimental and clinical therapeutics. The goal is to illustrate the pivotal role of a multidisciplinary approach to modern drug delivery, encompassing the application of sound biological and physicochemical principles to the engineering of drug delivery systems to meet the therapeutic need at hand. Importantly the Editorial Team of ADDR asks that the authors effectively window the extensive volume of literature, pick the important contributions and explain their importance, produce a forward looking identification of the challenges facing the field and produce a Conclusions section with expert recommendations to address the issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信