Amit Dubey, Amer M Alanazi, Rima Bhardwaj, Andrea Ragusa
{"title":"通过分子动力学和自由能谱分析从海洋细菌天然化合物中鉴定潜在的 NUDT5 抑制剂。","authors":"Amit Dubey, Amer M Alanazi, Rima Bhardwaj, Andrea Ragusa","doi":"10.1007/s11030-024-10950-5","DOIUrl":null,"url":null,"abstract":"<p><p>NUDIX hydrolase 5 (NUDT5) is an enzyme involved in the hydrolysis of nucleoside diphosphates linked to other moieties, such as ADP-ribose. This cofactor is vital in redox reactions and is essential for the activity of sirtuins and poly(ADP-ribose) polymerases, which are involved in DNA repair and genomic stability. It has been shown that NUDT5 activity can also influence NAD+ homeostasis, thereby affecting cancer cell metabolism and survival. In this regard, the discovery of NUDT5 inhibitors has emerged as a potential therapeutic approach in cancer treatment. In this study, we conducted a high-throughput virtual screening of marine bacterial compounds against the NUDT5 enzyme and four molecules were selected based on their docking scores. These compounds established strong interactions within the NUDT5 active site, with molecular analysis highlighting the key role of Trp<sup>28A</sup> and Trp<sup>46B</sup> residues. Molecular dynamics simulations over 200 ns indicated a stable behavior, in association with root mean square deviation values always below 3 Å, suggesting conformational stability. Free energy landscape analysis further supported their potential as NUDT5 inhibitors, offering avenues for novel therapeutic strategies against NUDT5-associated breast cancer.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of potential NUDT5 inhibitors from marine bacterial natural compounds via molecular dynamics and free energy landscape analysis.\",\"authors\":\"Amit Dubey, Amer M Alanazi, Rima Bhardwaj, Andrea Ragusa\",\"doi\":\"10.1007/s11030-024-10950-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>NUDIX hydrolase 5 (NUDT5) is an enzyme involved in the hydrolysis of nucleoside diphosphates linked to other moieties, such as ADP-ribose. This cofactor is vital in redox reactions and is essential for the activity of sirtuins and poly(ADP-ribose) polymerases, which are involved in DNA repair and genomic stability. It has been shown that NUDT5 activity can also influence NAD+ homeostasis, thereby affecting cancer cell metabolism and survival. In this regard, the discovery of NUDT5 inhibitors has emerged as a potential therapeutic approach in cancer treatment. In this study, we conducted a high-throughput virtual screening of marine bacterial compounds against the NUDT5 enzyme and four molecules were selected based on their docking scores. These compounds established strong interactions within the NUDT5 active site, with molecular analysis highlighting the key role of Trp<sup>28A</sup> and Trp<sup>46B</sup> residues. Molecular dynamics simulations over 200 ns indicated a stable behavior, in association with root mean square deviation values always below 3 Å, suggesting conformational stability. Free energy landscape analysis further supported their potential as NUDT5 inhibitors, offering avenues for novel therapeutic strategies against NUDT5-associated breast cancer.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-10950-5\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-10950-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Identification of potential NUDT5 inhibitors from marine bacterial natural compounds via molecular dynamics and free energy landscape analysis.
NUDIX hydrolase 5 (NUDT5) is an enzyme involved in the hydrolysis of nucleoside diphosphates linked to other moieties, such as ADP-ribose. This cofactor is vital in redox reactions and is essential for the activity of sirtuins and poly(ADP-ribose) polymerases, which are involved in DNA repair and genomic stability. It has been shown that NUDT5 activity can also influence NAD+ homeostasis, thereby affecting cancer cell metabolism and survival. In this regard, the discovery of NUDT5 inhibitors has emerged as a potential therapeutic approach in cancer treatment. In this study, we conducted a high-throughput virtual screening of marine bacterial compounds against the NUDT5 enzyme and four molecules were selected based on their docking scores. These compounds established strong interactions within the NUDT5 active site, with molecular analysis highlighting the key role of Trp28A and Trp46B residues. Molecular dynamics simulations over 200 ns indicated a stable behavior, in association with root mean square deviation values always below 3 Å, suggesting conformational stability. Free energy landscape analysis further supported their potential as NUDT5 inhibitors, offering avenues for novel therapeutic strategies against NUDT5-associated breast cancer.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;