Amit Dubey, Amer M Alanazi, Rima Bhardwaj, Andrea Ragusa
{"title":"通过分子动力学和自由能谱分析从海洋细菌天然化合物中鉴定潜在的 NUDT5 抑制剂。","authors":"Amit Dubey, Amer M Alanazi, Rima Bhardwaj, Andrea Ragusa","doi":"10.1007/s11030-024-10950-5","DOIUrl":null,"url":null,"abstract":"<p><p>NUDIX hydrolase 5 (NUDT5) is an enzyme involved in the hydrolysis of nucleoside diphosphates linked to other moieties, such as ADP-ribose. This cofactor is vital in redox reactions and is essential for the activity of sirtuins and poly(ADP-ribose) polymerases, which are involved in DNA repair and genomic stability. It has been shown that NUDT5 activity can also influence NAD+ homeostasis, thereby affecting cancer cell metabolism and survival. In this regard, the discovery of NUDT5 inhibitors has emerged as a potential therapeutic approach in cancer treatment. In this study, we conducted a high-throughput virtual screening of marine bacterial compounds against the NUDT5 enzyme and four molecules were selected based on their docking scores. These compounds established strong interactions within the NUDT5 active site, with molecular analysis highlighting the key role of Trp<sup>28A</sup> and Trp<sup>46B</sup> residues. Molecular dynamics simulations over 200 ns indicated a stable behavior, in association with root mean square deviation values always below 3 Å, suggesting conformational stability. Free energy landscape analysis further supported their potential as NUDT5 inhibitors, offering avenues for novel therapeutic strategies against NUDT5-associated breast cancer.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of potential NUDT5 inhibitors from marine bacterial natural compounds via molecular dynamics and free energy landscape analysis.\",\"authors\":\"Amit Dubey, Amer M Alanazi, Rima Bhardwaj, Andrea Ragusa\",\"doi\":\"10.1007/s11030-024-10950-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>NUDIX hydrolase 5 (NUDT5) is an enzyme involved in the hydrolysis of nucleoside diphosphates linked to other moieties, such as ADP-ribose. This cofactor is vital in redox reactions and is essential for the activity of sirtuins and poly(ADP-ribose) polymerases, which are involved in DNA repair and genomic stability. It has been shown that NUDT5 activity can also influence NAD+ homeostasis, thereby affecting cancer cell metabolism and survival. In this regard, the discovery of NUDT5 inhibitors has emerged as a potential therapeutic approach in cancer treatment. In this study, we conducted a high-throughput virtual screening of marine bacterial compounds against the NUDT5 enzyme and four molecules were selected based on their docking scores. These compounds established strong interactions within the NUDT5 active site, with molecular analysis highlighting the key role of Trp<sup>28A</sup> and Trp<sup>46B</sup> residues. Molecular dynamics simulations over 200 ns indicated a stable behavior, in association with root mean square deviation values always below 3 Å, suggesting conformational stability. Free energy landscape analysis further supported their potential as NUDT5 inhibitors, offering avenues for novel therapeutic strategies against NUDT5-associated breast cancer.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-10950-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-10950-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Identification of potential NUDT5 inhibitors from marine bacterial natural compounds via molecular dynamics and free energy landscape analysis.
NUDIX hydrolase 5 (NUDT5) is an enzyme involved in the hydrolysis of nucleoside diphosphates linked to other moieties, such as ADP-ribose. This cofactor is vital in redox reactions and is essential for the activity of sirtuins and poly(ADP-ribose) polymerases, which are involved in DNA repair and genomic stability. It has been shown that NUDT5 activity can also influence NAD+ homeostasis, thereby affecting cancer cell metabolism and survival. In this regard, the discovery of NUDT5 inhibitors has emerged as a potential therapeutic approach in cancer treatment. In this study, we conducted a high-throughput virtual screening of marine bacterial compounds against the NUDT5 enzyme and four molecules were selected based on their docking scores. These compounds established strong interactions within the NUDT5 active site, with molecular analysis highlighting the key role of Trp28A and Trp46B residues. Molecular dynamics simulations over 200 ns indicated a stable behavior, in association with root mean square deviation values always below 3 Å, suggesting conformational stability. Free energy landscape analysis further supported their potential as NUDT5 inhibitors, offering avenues for novel therapeutic strategies against NUDT5-associated breast cancer.