{"title":"帕金森病与霍普夫分岔和亨廷顿病与混沌的改进数学模型。","authors":"M. A. Elfouly","doi":"10.1007/s10441-024-09485-x","DOIUrl":null,"url":null,"abstract":"<div><p>Using delay differential equations to study mathematical models of Parkinson's disease and Huntington's disease is important to show how important it is for synchronization between basal ganglia loops to work together. We used the delay circuit RLC (resistor, inductor, capacitor) model to show how the direct pathway and the indirect pathway in the basal ganglia excite and inhibit the motor cortex, respectively. A term has been added to the mathematical model without time delay in the case of the hyperdirect pathway. It is proposed to add a non-linear term to adjust the synchronization. We studied Hopf bifurcation conditions for the proposed models. The desynchronization of response times between the direct pathway and the indirect pathway leads to different symptoms of Parkinson's disease. Tremor appears when the response time in the indirect pathway increases at rest. The simulation confirmed that tremor occurs and the motor cortex is in an inhibited state. The direct pathway can increase the time delay in the dopaminergic pathway, which significantly increases the activity of the motor cortex. The hyperdirect pathway regulates the activity of the motor cortex. The simulation showed bradykinesia occurs when we switch from one movement to another that is less exciting for the motor cortex. A decrease of GABA in the striatum or delayed excitation of the substantia nigra from the subthalamus may be a major cause of Parkinson's disease. An increase in the response time delay in one of the pathways results in the chaotic movement characteristic of Huntington's disease.</p></div>","PeriodicalId":7057,"journal":{"name":"Acta Biotheoretica","volume":"72 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Mathematical Models of Parkinson's Disease with Hopf Bifurcation and Huntington's Disease with Chaos\",\"authors\":\"M. A. Elfouly\",\"doi\":\"10.1007/s10441-024-09485-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using delay differential equations to study mathematical models of Parkinson's disease and Huntington's disease is important to show how important it is for synchronization between basal ganglia loops to work together. We used the delay circuit RLC (resistor, inductor, capacitor) model to show how the direct pathway and the indirect pathway in the basal ganglia excite and inhibit the motor cortex, respectively. A term has been added to the mathematical model without time delay in the case of the hyperdirect pathway. It is proposed to add a non-linear term to adjust the synchronization. We studied Hopf bifurcation conditions for the proposed models. The desynchronization of response times between the direct pathway and the indirect pathway leads to different symptoms of Parkinson's disease. Tremor appears when the response time in the indirect pathway increases at rest. The simulation confirmed that tremor occurs and the motor cortex is in an inhibited state. The direct pathway can increase the time delay in the dopaminergic pathway, which significantly increases the activity of the motor cortex. The hyperdirect pathway regulates the activity of the motor cortex. The simulation showed bradykinesia occurs when we switch from one movement to another that is less exciting for the motor cortex. A decrease of GABA in the striatum or delayed excitation of the substantia nigra from the subthalamus may be a major cause of Parkinson's disease. An increase in the response time delay in one of the pathways results in the chaotic movement characteristic of Huntington's disease.</p></div>\",\"PeriodicalId\":7057,\"journal\":{\"name\":\"Acta Biotheoretica\",\"volume\":\"72 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biotheoretica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10441-024-09485-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biotheoretica","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-024-09485-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Improved Mathematical Models of Parkinson's Disease with Hopf Bifurcation and Huntington's Disease with Chaos
Using delay differential equations to study mathematical models of Parkinson's disease and Huntington's disease is important to show how important it is for synchronization between basal ganglia loops to work together. We used the delay circuit RLC (resistor, inductor, capacitor) model to show how the direct pathway and the indirect pathway in the basal ganglia excite and inhibit the motor cortex, respectively. A term has been added to the mathematical model without time delay in the case of the hyperdirect pathway. It is proposed to add a non-linear term to adjust the synchronization. We studied Hopf bifurcation conditions for the proposed models. The desynchronization of response times between the direct pathway and the indirect pathway leads to different symptoms of Parkinson's disease. Tremor appears when the response time in the indirect pathway increases at rest. The simulation confirmed that tremor occurs and the motor cortex is in an inhibited state. The direct pathway can increase the time delay in the dopaminergic pathway, which significantly increases the activity of the motor cortex. The hyperdirect pathway regulates the activity of the motor cortex. The simulation showed bradykinesia occurs when we switch from one movement to another that is less exciting for the motor cortex. A decrease of GABA in the striatum or delayed excitation of the substantia nigra from the subthalamus may be a major cause of Parkinson's disease. An increase in the response time delay in one of the pathways results in the chaotic movement characteristic of Huntington's disease.
期刊介绍:
Acta Biotheoretica is devoted to the promotion of theoretical biology, encompassing mathematical biology and the philosophy of biology, paying special attention to the methodology of formation of biological theory.
Papers on all kind of biological theories are welcome. Interesting subjects include philosophy of biology, biomathematics, computational biology, genetics, ecology and morphology. The process of theory formation can be presented in verbal or mathematical form. Moreover, purely methodological papers can be devoted to the historical origins of the philosophy underlying biological theories and concepts.
Papers should contain clear statements of biological assumptions, and where applicable, a justification of their translation into mathematical form and a detailed discussion of the mathematical treatment. The connection to empirical data should be clarified.
Acta Biotheoretica also welcomes critical book reviews, short comments on previous papers and short notes directing attention to interesting new theoretical ideas.