整合机器学习,加强野火严重性预测:科罗拉多河上游流域研究。

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Science of the Total Environment Pub Date : 2024-11-20 Epub Date: 2024-08-31 DOI:10.1016/j.scitotenv.2024.175914
Heechan Han, Tadesse A Abitew, Hadi Bazrkar, Seonggyu Park, Jaehak Jeong
{"title":"整合机器学习,加强野火严重性预测:科罗拉多河上游流域研究。","authors":"Heechan Han, Tadesse A Abitew, Hadi Bazrkar, Seonggyu Park, Jaehak Jeong","doi":"10.1016/j.scitotenv.2024.175914","DOIUrl":null,"url":null,"abstract":"<p><p>Wildfires pose significant threats worldwide, requiring accurate prediction for mitigation. This study uses machine learning techniques to forecast wildfire severity in the Upper Colorado River basin. Datasets from 1984 to 2019 and key indicators like weather conditions and land use were employed. Random Forest outperformed Artificial Neural Network, achieving 72 % accuracy. Influential predictors include air temperature, vapor pressure deficit, NDVI, and fuel moisture. Solar radiation, SPEI, precipitation, and evapotranspiration also contribute significantly. Validation against actual severities from 2016 to 2019 showed mean prediction errors of 11.2 %, affirming the model's reliability. These results highlight the efficacy of machine learning in understanding wildfire severity, especially in vulnerable regions.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating machine learning for enhanced wildfire severity prediction: A study in the Upper Colorado River basin.\",\"authors\":\"Heechan Han, Tadesse A Abitew, Hadi Bazrkar, Seonggyu Park, Jaehak Jeong\",\"doi\":\"10.1016/j.scitotenv.2024.175914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wildfires pose significant threats worldwide, requiring accurate prediction for mitigation. This study uses machine learning techniques to forecast wildfire severity in the Upper Colorado River basin. Datasets from 1984 to 2019 and key indicators like weather conditions and land use were employed. Random Forest outperformed Artificial Neural Network, achieving 72 % accuracy. Influential predictors include air temperature, vapor pressure deficit, NDVI, and fuel moisture. Solar radiation, SPEI, precipitation, and evapotranspiration also contribute significantly. Validation against actual severities from 2016 to 2019 showed mean prediction errors of 11.2 %, affirming the model's reliability. These results highlight the efficacy of machine learning in understanding wildfire severity, especially in vulnerable regions.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.175914\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175914","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

野火在全球范围内构成了重大威胁,需要准确的预测来缓解。本研究利用机器学习技术预测科罗拉多河上游流域的野火严重程度。研究采用了 1984 年至 2019 年的数据集以及天气条件和土地利用等关键指标。随机森林的表现优于人工神经网络,准确率达到 72%。影响预测因子包括气温、水汽压差、NDVI 和燃料水分。太阳辐射、SPEI、降水量和蒸散量也有很大影响。根据 2016 年至 2019 年的实际严重程度进行的验证显示,平均预测误差为 11.2%,这肯定了模型的可靠性。这些结果凸显了机器学习在了解野火严重程度方面的功效,尤其是在脆弱地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating machine learning for enhanced wildfire severity prediction: A study in the Upper Colorado River basin.

Wildfires pose significant threats worldwide, requiring accurate prediction for mitigation. This study uses machine learning techniques to forecast wildfire severity in the Upper Colorado River basin. Datasets from 1984 to 2019 and key indicators like weather conditions and land use were employed. Random Forest outperformed Artificial Neural Network, achieving 72 % accuracy. Influential predictors include air temperature, vapor pressure deficit, NDVI, and fuel moisture. Solar radiation, SPEI, precipitation, and evapotranspiration also contribute significantly. Validation against actual severities from 2016 to 2019 showed mean prediction errors of 11.2 %, affirming the model's reliability. These results highlight the efficacy of machine learning in understanding wildfire severity, especially in vulnerable regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信