用于高效氧气还原反应的双原子铁催化剂的升华转化合成。

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Li Yan, Yu Mao, Yingxin Li, Qihao Sha, Kai Sun, Panpan Li, Geoffrey I. N. Waterhouse, Prof. Ziyun Wang, Prof. Shubo Tian, Prof. Xiaoming Sun
{"title":"用于高效氧气还原反应的双原子铁催化剂的升华转化合成。","authors":"Li Yan,&nbsp;Yu Mao,&nbsp;Yingxin Li,&nbsp;Qihao Sha,&nbsp;Kai Sun,&nbsp;Panpan Li,&nbsp;Geoffrey I. N. Waterhouse,&nbsp;Prof. Ziyun Wang,&nbsp;Prof. Shubo Tian,&nbsp;Prof. Xiaoming Sun","doi":"10.1002/anie.202413179","DOIUrl":null,"url":null,"abstract":"<p>Dual-atom catalysts (DACs) have garnered significant interest due to their remarkable catalytic reactivity. However, achieving atomically precise control in the fabrication of DACs remains a major challenge. Herein, we developed a straightforward and direct sublimation transformation synthesis strategy for dual-atom Fe catalysts (Fe<sub>2</sub>/NC) by utilizing in situ generated Fe<sub>2</sub>Cl<sub>6</sub>(g) dimers from FeCl<sub>3</sub>(s). The structure of Fe<sub>2</sub>/NC was investigated by aberration-corrected transmission electron microscopy and X-ray absorption fine structure (XAFS) spectroscopy. As-obtained Fe<sub>2</sub>/NC, with a Fe−Fe distance of 0.3 nm inherited from Fe<sub>2</sub>Cl<sub>6</sub>, displayed superior oxygen reduction performance with a half-wave potential of 0.90 V (vs. RHE), surpassing commercial Pt/C catalysts, Fe single-atom catalyst (Fe<sub>1</sub>/NC), and its counterpart with a common and shorter Fe−Fe distance of ~0.25 nm (Fe<sub>2</sub>/NC-S). Density functional theory (DFT) calculations and microkinetic analysis revealed the extended Fe−Fe distance in Fe<sub>2</sub>/NC is crucial for the O<sub>2</sub> adsorption on catalytic sites and facilitating the subsequent protonation process, thereby boosting catalytic performance. This work not only introduces a new approach for fabricating atomically precise DACs, but also offers a deeper understanding of the intermetallic distance effect on dual-site catalysis.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sublimation Transformation Synthesis of Dual-Atom Fe Catalysts for Efficient Oxygen Reduction Reaction\",\"authors\":\"Li Yan,&nbsp;Yu Mao,&nbsp;Yingxin Li,&nbsp;Qihao Sha,&nbsp;Kai Sun,&nbsp;Panpan Li,&nbsp;Geoffrey I. N. Waterhouse,&nbsp;Prof. Ziyun Wang,&nbsp;Prof. Shubo Tian,&nbsp;Prof. Xiaoming Sun\",\"doi\":\"10.1002/anie.202413179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dual-atom catalysts (DACs) have garnered significant interest due to their remarkable catalytic reactivity. However, achieving atomically precise control in the fabrication of DACs remains a major challenge. Herein, we developed a straightforward and direct sublimation transformation synthesis strategy for dual-atom Fe catalysts (Fe<sub>2</sub>/NC) by utilizing in situ generated Fe<sub>2</sub>Cl<sub>6</sub>(g) dimers from FeCl<sub>3</sub>(s). The structure of Fe<sub>2</sub>/NC was investigated by aberration-corrected transmission electron microscopy and X-ray absorption fine structure (XAFS) spectroscopy. As-obtained Fe<sub>2</sub>/NC, with a Fe−Fe distance of 0.3 nm inherited from Fe<sub>2</sub>Cl<sub>6</sub>, displayed superior oxygen reduction performance with a half-wave potential of 0.90 V (vs. RHE), surpassing commercial Pt/C catalysts, Fe single-atom catalyst (Fe<sub>1</sub>/NC), and its counterpart with a common and shorter Fe−Fe distance of ~0.25 nm (Fe<sub>2</sub>/NC-S). Density functional theory (DFT) calculations and microkinetic analysis revealed the extended Fe−Fe distance in Fe<sub>2</sub>/NC is crucial for the O<sub>2</sub> adsorption on catalytic sites and facilitating the subsequent protonation process, thereby boosting catalytic performance. This work not only introduces a new approach for fabricating atomically precise DACs, but also offers a deeper understanding of the intermetallic distance effect on dual-site catalysis.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202413179\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202413179","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

双原子催化剂(DAC)因其显著的催化反应活性而备受关注。然而,在制造双原子催化剂过程中实现原子精确控制仍然是一项重大挑战。在此,我们利用从 FeCl3(s)原位生成的 Fe2Cl6(g)二聚体,开发了一种简单直接的双原子铁催化剂(Fe2/NC)升华转化合成策略。通过像差校正透射电子显微镜和 X 射线吸收精细结构(XAFS)光谱研究了 Fe2/NC 的结构。获得的 Fe2/NC 的铁-铁距离为 0.3 nm,继承自 Fe2Cl6,显示出卓越的氧还原性能,半波电位为 0.90 V(相对于 RHE),超过了商业化的 Pt/C 催化剂、铁单原子催化剂(Fe1/NC)以及铁-铁距离更短的普通催化剂(Fe2/NC-S)(约 0.25 nm)。密度泛函理论(DFT)计算和微动力学分析表明,Fe2/NC 中延长的 Fe-Fe 间距对于催化位点吸附 O2 和促进随后的质子化过程至关重要,从而提高了催化性能。这项工作不仅为制备原子精度的 DAC 引入了一种新方法,而且加深了人们对金属间距对双位点催化效应的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sublimation Transformation Synthesis of Dual-Atom Fe Catalysts for Efficient Oxygen Reduction Reaction

Sublimation Transformation Synthesis of Dual-Atom Fe Catalysts for Efficient Oxygen Reduction Reaction

Dual-atom catalysts (DACs) have garnered significant interest due to their remarkable catalytic reactivity. However, achieving atomically precise control in the fabrication of DACs remains a major challenge. Herein, we developed a straightforward and direct sublimation transformation synthesis strategy for dual-atom Fe catalysts (Fe2/NC) by utilizing in situ generated Fe2Cl6(g) dimers from FeCl3(s). The structure of Fe2/NC was investigated by aberration-corrected transmission electron microscopy and X-ray absorption fine structure (XAFS) spectroscopy. As-obtained Fe2/NC, with a Fe−Fe distance of 0.3 nm inherited from Fe2Cl6, displayed superior oxygen reduction performance with a half-wave potential of 0.90 V (vs. RHE), surpassing commercial Pt/C catalysts, Fe single-atom catalyst (Fe1/NC), and its counterpart with a common and shorter Fe−Fe distance of ~0.25 nm (Fe2/NC-S). Density functional theory (DFT) calculations and microkinetic analysis revealed the extended Fe−Fe distance in Fe2/NC is crucial for the O2 adsorption on catalytic sites and facilitating the subsequent protonation process, thereby boosting catalytic performance. This work not only introduces a new approach for fabricating atomically precise DACs, but also offers a deeper understanding of the intermetallic distance effect on dual-site catalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信