通过简单的准金属单晶框架表面工程提高 SERS 活性的两个数量级。

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
ACS Catalysis Pub Date : 2024-09-18 Epub Date: 2024-09-03 DOI:10.1021/acs.nanolett.4c03309
Xiaoyu Song, Yahui Li, Meng Yin, Wencai Yi, Wei Liu, Junfang Li, Guangcheng Xi
{"title":"通过简单的准金属单晶框架表面工程提高 SERS 活性的两个数量级。","authors":"Xiaoyu Song, Yahui Li, Meng Yin, Wencai Yi, Wei Liu, Junfang Li, Guangcheng Xi","doi":"10.1021/acs.nanolett.4c03309","DOIUrl":null,"url":null,"abstract":"<p><p>Beyond noble metals and semiconductors, quasi-metals have recently been shown to be noteworthy substrates for surface enhanced Raman spectroscopy, and their excellent quasi-metal surface-enhanced Raman spectroscopy (SERS) sensing has demonstrated a wider range of application scenarios. However, the underlying mechanism behind the enhanced Raman activity is still unclear. Here, we demonstrate that surface hydroxyls play a crucial role in the enhancement of the SERS activity of quasi-metal nanostructures. As a demonstration material, quasi-metallic MoO<sub>2</sub> single-crystal frameworks rich in surface hydroxyls have been shown to have 100 times higher SERS activity than MoO<sub>2</sub> single-crystal frameworks without hydroxyl functionalization, with a Raman enhancement factor of up to 7.6 × 10<sup>7</sup>. Experimental and first-principles density-functional theory calculation results show that the enhanced Raman activity can be attributed to an effective interfacial charge transfer within the MoO<sub>2</sub>/OH/molecule system.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Orders-of-Magnitude Enhancement of SERS Activity via a Simple Surface Engineering of Quasi-Metal Single-Crystal Frameworks.\",\"authors\":\"Xiaoyu Song, Yahui Li, Meng Yin, Wencai Yi, Wei Liu, Junfang Li, Guangcheng Xi\",\"doi\":\"10.1021/acs.nanolett.4c03309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Beyond noble metals and semiconductors, quasi-metals have recently been shown to be noteworthy substrates for surface enhanced Raman spectroscopy, and their excellent quasi-metal surface-enhanced Raman spectroscopy (SERS) sensing has demonstrated a wider range of application scenarios. However, the underlying mechanism behind the enhanced Raman activity is still unclear. Here, we demonstrate that surface hydroxyls play a crucial role in the enhancement of the SERS activity of quasi-metal nanostructures. As a demonstration material, quasi-metallic MoO<sub>2</sub> single-crystal frameworks rich in surface hydroxyls have been shown to have 100 times higher SERS activity than MoO<sub>2</sub> single-crystal frameworks without hydroxyl functionalization, with a Raman enhancement factor of up to 7.6 × 10<sup>7</sup>. Experimental and first-principles density-functional theory calculation results show that the enhanced Raman activity can be attributed to an effective interfacial charge transfer within the MoO<sub>2</sub>/OH/molecule system.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03309\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03309","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

除了贵金属和半导体之外,准金属最近也被证明是值得注意的表面增强拉曼光谱基底,其出色的准金属表面增强拉曼光谱(SERS)传感功能展示了更广泛的应用场景。然而,增强拉曼活性背后的基本机制仍不清楚。在这里,我们证明了表面羟基在增强准金属纳米结构的 SERS 活性中起着至关重要的作用。作为一种示范材料,富含表面羟基的准金属 MoO2 单晶框架的 SERS 活性比没有羟基官能化的 MoO2 单晶框架高 100 倍,拉曼增强因子高达 7.6 × 107。实验和第一原理密度泛函理论计算的结果表明,拉曼活性的增强可归因于 MoO2/羟基/分子体系内有效的界面电荷转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two-Orders-of-Magnitude Enhancement of SERS Activity via a Simple Surface Engineering of Quasi-Metal Single-Crystal Frameworks.

Two-Orders-of-Magnitude Enhancement of SERS Activity via a Simple Surface Engineering of Quasi-Metal Single-Crystal Frameworks.

Beyond noble metals and semiconductors, quasi-metals have recently been shown to be noteworthy substrates for surface enhanced Raman spectroscopy, and their excellent quasi-metal surface-enhanced Raman spectroscopy (SERS) sensing has demonstrated a wider range of application scenarios. However, the underlying mechanism behind the enhanced Raman activity is still unclear. Here, we demonstrate that surface hydroxyls play a crucial role in the enhancement of the SERS activity of quasi-metal nanostructures. As a demonstration material, quasi-metallic MoO2 single-crystal frameworks rich in surface hydroxyls have been shown to have 100 times higher SERS activity than MoO2 single-crystal frameworks without hydroxyl functionalization, with a Raman enhancement factor of up to 7.6 × 107. Experimental and first-principles density-functional theory calculation results show that the enhanced Raman activity can be attributed to an effective interfacial charge transfer within the MoO2/OH/molecule system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信