单镜头多光谱编码:推进用于加密和光谱学的光学光刻技术。

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
ACS Catalysis Pub Date : 2024-09-18 Epub Date: 2024-09-03 DOI:10.1021/acs.nanolett.4c02153
Hyewon Shim, Geonwoong Park, Hyunsuk Yun, Sunmin Ryu, Yong-Young Noh, Cheol-Joo Kim
{"title":"单镜头多光谱编码:推进用于加密和光谱学的光学光刻技术。","authors":"Hyewon Shim, Geonwoong Park, Hyunsuk Yun, Sunmin Ryu, Yong-Young Noh, Cheol-Joo Kim","doi":"10.1021/acs.nanolett.4c02153","DOIUrl":null,"url":null,"abstract":"<p><p>Most modern optical display and sensing devices utilize a limited number of spectral units within the visible range, based on human color perception. In contrast, the rapid advancement of machine-based pattern recognition and spectral analysis could facilitate the use of multispectral functional units, yet the challenge of creating complex, high-definition, and reproducible patterns with an increasing number of spectral units limits their widespread application. Here, we report a technique for optical lithography that employs a single-shot exposure to reproduce perovskite films with spatially controlled optical band gaps through light-induced compositional modulations. Luminescent patterns are designed to program correlations between spatial and spectral information, covering the entire visible spectral range. Using this platform, we demonstrate multispectral encoding patterns for encryption and multivariate optical converters for dispersive optics-free spectroscopy with high spectral resolution. The fabrication process is conducted at room temperature and can be extended to other material and device platforms.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Shot Multispectral Encoding: Advancing Optical Lithography for Encryption and Spectroscopy.\",\"authors\":\"Hyewon Shim, Geonwoong Park, Hyunsuk Yun, Sunmin Ryu, Yong-Young Noh, Cheol-Joo Kim\",\"doi\":\"10.1021/acs.nanolett.4c02153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most modern optical display and sensing devices utilize a limited number of spectral units within the visible range, based on human color perception. In contrast, the rapid advancement of machine-based pattern recognition and spectral analysis could facilitate the use of multispectral functional units, yet the challenge of creating complex, high-definition, and reproducible patterns with an increasing number of spectral units limits their widespread application. Here, we report a technique for optical lithography that employs a single-shot exposure to reproduce perovskite films with spatially controlled optical band gaps through light-induced compositional modulations. Luminescent patterns are designed to program correlations between spatial and spectral information, covering the entire visible spectral range. Using this platform, we demonstrate multispectral encoding patterns for encryption and multivariate optical converters for dispersive optics-free spectroscopy with high spectral resolution. The fabrication process is conducted at room temperature and can be extended to other material and device platforms.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c02153\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02153","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于人类对色彩的感知,大多数现代光学显示和传感设备在可见光范围内使用数量有限的光谱单元。相比之下,基于机器的模式识别和光谱分析技术的飞速发展可以促进多光谱功能单元的使用,然而,要利用越来越多的光谱单元创建复杂、高清晰度和可重现的图案,这一挑战限制了它们的广泛应用。在此,我们报告了一种光学光刻技术,该技术采用单次曝光,通过光诱导成分调制来复制具有空间可控光带隙的包晶薄膜。发光图案旨在对空间和光谱信息之间的相关性进行编程,覆盖整个可见光谱范围。利用这一平台,我们展示了用于加密的多光谱编码图案,以及用于高光谱分辨率无色散光学光谱的多变量光学转换器。制造过程在室温下进行,可扩展到其他材料和器件平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Single-Shot Multispectral Encoding: Advancing Optical Lithography for Encryption and Spectroscopy.

Single-Shot Multispectral Encoding: Advancing Optical Lithography for Encryption and Spectroscopy.

Most modern optical display and sensing devices utilize a limited number of spectral units within the visible range, based on human color perception. In contrast, the rapid advancement of machine-based pattern recognition and spectral analysis could facilitate the use of multispectral functional units, yet the challenge of creating complex, high-definition, and reproducible patterns with an increasing number of spectral units limits their widespread application. Here, we report a technique for optical lithography that employs a single-shot exposure to reproduce perovskite films with spatially controlled optical band gaps through light-induced compositional modulations. Luminescent patterns are designed to program correlations between spatial and spectral information, covering the entire visible spectral range. Using this platform, we demonstrate multispectral encoding patterns for encryption and multivariate optical converters for dispersive optics-free spectroscopy with high spectral resolution. The fabrication process is conducted at room temperature and can be extended to other material and device platforms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信