利用等离子体诱导的不对称电场实现自驱动石墨烯光电探测器阵列。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nano Letters Pub Date : 2024-09-18 Epub Date: 2024-09-03 DOI:10.1021/acs.nanolett.4c03269
Li Zhang, Ximiao Wang, Zebo Zheng, Chen Zhang, Huajian Zheng, Chuan Liu, Huanjun Chen, Mengye Wang
{"title":"利用等离子体诱导的不对称电场实现自驱动石墨烯光电探测器阵列。","authors":"Li Zhang, Ximiao Wang, Zebo Zheng, Chen Zhang, Huajian Zheng, Chuan Liu, Huanjun Chen, Mengye Wang","doi":"10.1021/acs.nanolett.4c03269","DOIUrl":null,"url":null,"abstract":"<p><p>Gap surface plasmon (GSP) modes enhance graphene photodetectors (GPDs)' performance by confining the incident light within nanogaps, giving rise to strong light absorption. Here, we propose an asymmetric plasmonic nanostructure array on planar graphene comprising stripe- and triangle-shaped sharp tip arrays. Upon light excitation, the noncentrosymmetric metallic nanostructures show strong light-matter interactions with localized field close to the surface of tips, causing an asymmetric electric field. These features can accelerate the hot electron generation in graphene, forming a directional diffusion current. Accordingly, the artificial GPDs exhibit a wavelength-dependence behavior covering the wavelength range from 0.8 to 1.6 μm, with three photoresponse maxima corresponding to the nanostructures' resonances. Additionally, the polarization-dependent GPDs can realize a responsivity of ∼25 mA/W and a noise equivalent power of ∼0.44 nW/Hz<sup>1/2</sup> at zero bias when excited at the resonance of 1.4 μm. Overall, our study offers a new strategy for preparing compact and multifrequency infrared GPDs.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Driven Graphene Photodetector Arrays Enabled by Plasmon-Induced Asymmetric Electric Field.\",\"authors\":\"Li Zhang, Ximiao Wang, Zebo Zheng, Chen Zhang, Huajian Zheng, Chuan Liu, Huanjun Chen, Mengye Wang\",\"doi\":\"10.1021/acs.nanolett.4c03269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gap surface plasmon (GSP) modes enhance graphene photodetectors (GPDs)' performance by confining the incident light within nanogaps, giving rise to strong light absorption. Here, we propose an asymmetric plasmonic nanostructure array on planar graphene comprising stripe- and triangle-shaped sharp tip arrays. Upon light excitation, the noncentrosymmetric metallic nanostructures show strong light-matter interactions with localized field close to the surface of tips, causing an asymmetric electric field. These features can accelerate the hot electron generation in graphene, forming a directional diffusion current. Accordingly, the artificial GPDs exhibit a wavelength-dependence behavior covering the wavelength range from 0.8 to 1.6 μm, with three photoresponse maxima corresponding to the nanostructures' resonances. Additionally, the polarization-dependent GPDs can realize a responsivity of ∼25 mA/W and a noise equivalent power of ∼0.44 nW/Hz<sup>1/2</sup> at zero bias when excited at the resonance of 1.4 μm. Overall, our study offers a new strategy for preparing compact and multifrequency infrared GPDs.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03269\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03269","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

间隙表面等离子体(GSP)模式可将入射光限制在纳米间隙内,从而产生强烈的光吸收,从而提高石墨烯光电探测器(GPD)的性能。在这里,我们提出了一种平面石墨烯上的非对称等离子体纳米结构阵列,由条纹状和三角形尖锐尖端阵列组成。在光激发下,非中心对称的金属纳米结构会与靠近尖端表面的局部场发生强烈的光物质相互作用,从而产生非对称电场。这些特征可加速石墨烯中热电子的产生,形成定向扩散电流。因此,人工 GPD 表现出波长依赖性,波长范围从 0.8 到 1.6 μm,有三个光响应最大值与纳米结构的共振相对应。此外,与偏振相关的 GPD 在 1.4 μm 的共振点激发时,零偏压下的响应率可达 25 mA/W,噪声等效功率可达 0.44 nW/Hz1/2。总之,我们的研究为制备紧凑型多频红外 GPD 提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-Driven Graphene Photodetector Arrays Enabled by Plasmon-Induced Asymmetric Electric Field.

Self-Driven Graphene Photodetector Arrays Enabled by Plasmon-Induced Asymmetric Electric Field.

Gap surface plasmon (GSP) modes enhance graphene photodetectors (GPDs)' performance by confining the incident light within nanogaps, giving rise to strong light absorption. Here, we propose an asymmetric plasmonic nanostructure array on planar graphene comprising stripe- and triangle-shaped sharp tip arrays. Upon light excitation, the noncentrosymmetric metallic nanostructures show strong light-matter interactions with localized field close to the surface of tips, causing an asymmetric electric field. These features can accelerate the hot electron generation in graphene, forming a directional diffusion current. Accordingly, the artificial GPDs exhibit a wavelength-dependence behavior covering the wavelength range from 0.8 to 1.6 μm, with three photoresponse maxima corresponding to the nanostructures' resonances. Additionally, the polarization-dependent GPDs can realize a responsivity of ∼25 mA/W and a noise equivalent power of ∼0.44 nW/Hz1/2 at zero bias when excited at the resonance of 1.4 μm. Overall, our study offers a new strategy for preparing compact and multifrequency infrared GPDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信