{"title":"将 DNA 纳米组合编程为多价溶酶体降解剂,以有效降解致病性膜蛋白。","authors":"Shuyi Yu, Tianhui Shi, Chenbiao Li, Chongyu Xie, Fuan Wang, Xiaoqing Liu","doi":"10.1021/acs.nanolett.4c03102","DOIUrl":null,"url":null,"abstract":"<p><p>Lysosome-targeting chimera (LYTAC) shows great promise for protein-based therapeutics by targeted degradation of disease-associated membrane or extracellular proteins, yet its efficiency is constrained by the limited binding affinity between LYTAC reagents and designated proteins. Here, we established a programmable and multivalent LYTAC system by tandem assembly of DNA into a high-affinity protein degrader, a heterodimer aptamer nanostructure targeting both pathogenic membrane protein and lysosome-targeting receptor (insulin-like growth factor 2 receptor, IGF2R) with adjustable spatial distribution or organization pattern. The DNA-based multivalent LYTACs showed enhanced efficacy in removing immune-checkpoint protein programmable death-ligand 1 (PD-L1) and vascular endothelial growth factor receptor 2 (VEGFR2) in tumor cell membrane that respectively motivated a significant increase in T cell activity and a potent effect on cancer cell growth inhibition. With high programmability and versatility, this multivalent LYTAC system holds considerable promise for realizing protein therapeutics with enhanced activity.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Programming DNA Nanoassemblies into Polyvalent Lysosomal Degraders for Potent Degradation of Pathogenic Membrane Proteins.\",\"authors\":\"Shuyi Yu, Tianhui Shi, Chenbiao Li, Chongyu Xie, Fuan Wang, Xiaoqing Liu\",\"doi\":\"10.1021/acs.nanolett.4c03102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lysosome-targeting chimera (LYTAC) shows great promise for protein-based therapeutics by targeted degradation of disease-associated membrane or extracellular proteins, yet its efficiency is constrained by the limited binding affinity between LYTAC reagents and designated proteins. Here, we established a programmable and multivalent LYTAC system by tandem assembly of DNA into a high-affinity protein degrader, a heterodimer aptamer nanostructure targeting both pathogenic membrane protein and lysosome-targeting receptor (insulin-like growth factor 2 receptor, IGF2R) with adjustable spatial distribution or organization pattern. The DNA-based multivalent LYTACs showed enhanced efficacy in removing immune-checkpoint protein programmable death-ligand 1 (PD-L1) and vascular endothelial growth factor receptor 2 (VEGFR2) in tumor cell membrane that respectively motivated a significant increase in T cell activity and a potent effect on cancer cell growth inhibition. With high programmability and versatility, this multivalent LYTAC system holds considerable promise for realizing protein therapeutics with enhanced activity.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03102\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03102","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Programming DNA Nanoassemblies into Polyvalent Lysosomal Degraders for Potent Degradation of Pathogenic Membrane Proteins.
Lysosome-targeting chimera (LYTAC) shows great promise for protein-based therapeutics by targeted degradation of disease-associated membrane or extracellular proteins, yet its efficiency is constrained by the limited binding affinity between LYTAC reagents and designated proteins. Here, we established a programmable and multivalent LYTAC system by tandem assembly of DNA into a high-affinity protein degrader, a heterodimer aptamer nanostructure targeting both pathogenic membrane protein and lysosome-targeting receptor (insulin-like growth factor 2 receptor, IGF2R) with adjustable spatial distribution or organization pattern. The DNA-based multivalent LYTACs showed enhanced efficacy in removing immune-checkpoint protein programmable death-ligand 1 (PD-L1) and vascular endothelial growth factor receptor 2 (VEGFR2) in tumor cell membrane that respectively motivated a significant increase in T cell activity and a potent effect on cancer cell growth inhibition. With high programmability and versatility, this multivalent LYTAC system holds considerable promise for realizing protein therapeutics with enhanced activity.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.