Jianglei Zhang, Weijun Li, Yifan Yang, Yuhong He, Zigao Tang, Haotong Wei, Junhu Zhang, Bai Yang
{"title":"用于灵活 X 射线成像的 CsPbBr3 单晶阵列定向排列。","authors":"Jianglei Zhang, Weijun Li, Yifan Yang, Yuhong He, Zigao Tang, Haotong Wei, Junhu Zhang, Bai Yang","doi":"10.1021/acs.nanolett.4c03651","DOIUrl":null,"url":null,"abstract":"<p><p>The utilization of perovskite materials in flexible optoelectronics is experiencing distinct diversification including X-ray detection applications. Here, we report the oriented alignment of cesium lead bromide (CsPbBr<sub>3</sub>) single-crystal arrays on flexible polydimethylsiloxane (PDMS) substrates. By precisely confining the crystallization process within spatially delimited precursor droplets, we achieve a well-oriented crystal alignment through the spontaneous rotation of the CsPbBr<sub>3</sub> microcuboids. This approach allows for precise control over the microcuboid morphologies by varying the growth temperature. We design flexible X-ray detector arrays by seamlessly integrating CsPbBr<sub>3</sub> microcuboids with electrode arrays. The flexible X-ray detector can output a high sensitivity of 1.97 × 10<sup>5</sup> μC·Gy<sub>air</sub><sup>-1</sup>·cm<sup>-2</sup> and a low detection limit of 89 nGy<sub>air</sub>·s<sup>-1</sup> after the surface passivation process. The excellent mechanical properties, outstanding X-ray detection capabilities, and high pixel uniformity are also demonstrated in conformal X-ray imaging of curved surfaces.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oriented Alignment of CsPbBr<sub>3</sub> Single-Crystal Arrays for Flexible X-ray Imaging.\",\"authors\":\"Jianglei Zhang, Weijun Li, Yifan Yang, Yuhong He, Zigao Tang, Haotong Wei, Junhu Zhang, Bai Yang\",\"doi\":\"10.1021/acs.nanolett.4c03651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The utilization of perovskite materials in flexible optoelectronics is experiencing distinct diversification including X-ray detection applications. Here, we report the oriented alignment of cesium lead bromide (CsPbBr<sub>3</sub>) single-crystal arrays on flexible polydimethylsiloxane (PDMS) substrates. By precisely confining the crystallization process within spatially delimited precursor droplets, we achieve a well-oriented crystal alignment through the spontaneous rotation of the CsPbBr<sub>3</sub> microcuboids. This approach allows for precise control over the microcuboid morphologies by varying the growth temperature. We design flexible X-ray detector arrays by seamlessly integrating CsPbBr<sub>3</sub> microcuboids with electrode arrays. The flexible X-ray detector can output a high sensitivity of 1.97 × 10<sup>5</sup> μC·Gy<sub>air</sub><sup>-1</sup>·cm<sup>-2</sup> and a low detection limit of 89 nGy<sub>air</sub>·s<sup>-1</sup> after the surface passivation process. The excellent mechanical properties, outstanding X-ray detection capabilities, and high pixel uniformity are also demonstrated in conformal X-ray imaging of curved surfaces.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03651\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03651","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
包晶材料在柔性光电子学中的应用正经历着明显的多样化,包括 X 射线探测应用。在此,我们报告了在柔性聚二甲基硅氧烷(PDMS)基底上定向排列溴化铯铅(CsPbBr3)单晶阵列的情况。通过将结晶过程精确限制在空间受限的前驱体液滴中,我们通过 CsPbBr3 微立方体的自发旋转实现了定向良好的晶体排列。这种方法可以通过改变生长温度来精确控制微立方体的形态。通过将 CsPbBr3 微立方体与电极阵列无缝集成,我们设计出了柔性 X 射线探测器阵列。经过表面钝化处理后,柔性 X 射线探测器可输出 1.97 × 105 μC-Gyair-1-cm-2 的高灵敏度和 89 nGyair-s-1 的低检测限。卓越的机械性能、出色的 X 射线探测能力和高像素均匀性还在曲面保形 X 射线成像中得到了验证。
Oriented Alignment of CsPbBr3 Single-Crystal Arrays for Flexible X-ray Imaging.
The utilization of perovskite materials in flexible optoelectronics is experiencing distinct diversification including X-ray detection applications. Here, we report the oriented alignment of cesium lead bromide (CsPbBr3) single-crystal arrays on flexible polydimethylsiloxane (PDMS) substrates. By precisely confining the crystallization process within spatially delimited precursor droplets, we achieve a well-oriented crystal alignment through the spontaneous rotation of the CsPbBr3 microcuboids. This approach allows for precise control over the microcuboid morphologies by varying the growth temperature. We design flexible X-ray detector arrays by seamlessly integrating CsPbBr3 microcuboids with electrode arrays. The flexible X-ray detector can output a high sensitivity of 1.97 × 105 μC·Gyair-1·cm-2 and a low detection limit of 89 nGyair·s-1 after the surface passivation process. The excellent mechanical properties, outstanding X-ray detection capabilities, and high pixel uniformity are also demonstrated in conformal X-ray imaging of curved surfaces.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.