铁电极化驱动石墨烯的非易失性电光响应。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nano Letters Pub Date : 2024-09-18 Epub Date: 2024-09-03 DOI:10.1021/acs.nanolett.4c02625
Jianghong Wu, Jialing Jian, Hui Ma, Yuting Ye, Bo Tang, Zhuang Qian, Qingyan Deng, Boshu Sun, Shi Liu, Hongtao Lin, Lan Li
{"title":"铁电极化驱动石墨烯的非易失性电光响应。","authors":"Jianghong Wu, Jialing Jian, Hui Ma, Yuting Ye, Bo Tang, Zhuang Qian, Qingyan Deng, Boshu Sun, Shi Liu, Hongtao Lin, Lan Li","doi":"10.1021/acs.nanolett.4c02625","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional materials (2DMs) have exhibited remarkably tunable optical characteristics, which have been applied for significant applications in communications, sensing, and computing. However, the reported tunable optical properties of 2DMs are almost volatile, impeding them in the applications of multifarious emerging frameworks such as programmable operation and neuromorphic computing. In this work, nonvolatile electro-optic response is developed by the graphene-Al<sub>2</sub>O<sub>3</sub>-In<sub>2</sub>Se<sub>3</sub> heterostructure integrating with microring resonators (MRRs). In such compact devices, the optical absorption coefficient of graphene is substantially tuned by the out-of-plane ferroelectric polarization in α-In<sub>2</sub>Se<sub>3</sub>, resulting in a nonvolatile optical transmission in MRRs. This work demonstrates that integrating graphene with ferroelectric materials paves the way to develop nonvolatile devices in photonic circuits for emerging applications such as optical neural networks.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonvolatile Electro-optic Response of Graphene Driven by Ferroelectric Polarization.\",\"authors\":\"Jianghong Wu, Jialing Jian, Hui Ma, Yuting Ye, Bo Tang, Zhuang Qian, Qingyan Deng, Boshu Sun, Shi Liu, Hongtao Lin, Lan Li\",\"doi\":\"10.1021/acs.nanolett.4c02625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-dimensional materials (2DMs) have exhibited remarkably tunable optical characteristics, which have been applied for significant applications in communications, sensing, and computing. However, the reported tunable optical properties of 2DMs are almost volatile, impeding them in the applications of multifarious emerging frameworks such as programmable operation and neuromorphic computing. In this work, nonvolatile electro-optic response is developed by the graphene-Al<sub>2</sub>O<sub>3</sub>-In<sub>2</sub>Se<sub>3</sub> heterostructure integrating with microring resonators (MRRs). In such compact devices, the optical absorption coefficient of graphene is substantially tuned by the out-of-plane ferroelectric polarization in α-In<sub>2</sub>Se<sub>3</sub>, resulting in a nonvolatile optical transmission in MRRs. This work demonstrates that integrating graphene with ferroelectric materials paves the way to develop nonvolatile devices in photonic circuits for emerging applications such as optical neural networks.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c02625\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02625","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维材料(2DM)具有显著的可调谐光学特性,已在通信、传感和计算领域得到广泛应用。然而,所报道的二维材料的可调光学特性几乎是不稳定的,这阻碍了它们在可编程操作和神经形态计算等多种新兴框架中的应用。在这项工作中,石墨烯-Al2O3-In2Se3 异质结构与微oring 谐振器 (MRR) 相结合,开发出了非易失性电光响应。在这种紧凑型器件中,石墨烯的光吸收系数可通过 α-In2Se3 中的面外铁电极化进行大幅调整,从而在 MRR 中实现非易失性光传输。这项工作表明,将石墨烯与铁电材料集成在一起,为开发光子电路中的非易失性器件铺平了道路,可用于光学神经网络等新兴应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonvolatile Electro-optic Response of Graphene Driven by Ferroelectric Polarization.

Nonvolatile Electro-optic Response of Graphene Driven by Ferroelectric Polarization.

Two-dimensional materials (2DMs) have exhibited remarkably tunable optical characteristics, which have been applied for significant applications in communications, sensing, and computing. However, the reported tunable optical properties of 2DMs are almost volatile, impeding them in the applications of multifarious emerging frameworks such as programmable operation and neuromorphic computing. In this work, nonvolatile electro-optic response is developed by the graphene-Al2O3-In2Se3 heterostructure integrating with microring resonators (MRRs). In such compact devices, the optical absorption coefficient of graphene is substantially tuned by the out-of-plane ferroelectric polarization in α-In2Se3, resulting in a nonvolatile optical transmission in MRRs. This work demonstrates that integrating graphene with ferroelectric materials paves the way to develop nonvolatile devices in photonic circuits for emerging applications such as optical neural networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信