{"title":"未活化烯烃的无过渡金属双官能化:芳基化/唑化、芳基化/氯化和芳基化/氰化","authors":"Li Li , Viresh H. Rawal","doi":"10.1016/j.chempr.2024.07.036","DOIUrl":null,"url":null,"abstract":"<div><div>Arylethylamines represent a privileged scaffold in pharmaceutical compounds and form the backbone of many medical drugs, including those used for treating neurological diseases and pain. Their biomedical significance has inspired new synthetic methods that rely on transition metal-catalyzed aminoarylation reaction to an alkene, often in conjunction with a photoredox catalyst or a photosensitizer and guided by a directing or stabilizing group. Here, we introduce a simple and effective method for the azidoarylation of unactivated alkenes under transition metal-free conditions. Visible- or near-UV-light irradiation of readily available triarylbismuth dichlorides generates an aryl radical that selectively adds to the alkene, and the resulting homobenzyl radical is intercepted by an amine equivalent. This method offers a broad substrate scope and also enables the arylchlorination and arylcyanation of unactivated alkenes.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 10","pages":"Pages 3243-3253"},"PeriodicalIF":19.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition metal-free difunctionalization of unactivated alkenes: Arylation/azidation, arylation/chlorination, and arylation/cyanation\",\"authors\":\"Li Li , Viresh H. Rawal\",\"doi\":\"10.1016/j.chempr.2024.07.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Arylethylamines represent a privileged scaffold in pharmaceutical compounds and form the backbone of many medical drugs, including those used for treating neurological diseases and pain. Their biomedical significance has inspired new synthetic methods that rely on transition metal-catalyzed aminoarylation reaction to an alkene, often in conjunction with a photoredox catalyst or a photosensitizer and guided by a directing or stabilizing group. Here, we introduce a simple and effective method for the azidoarylation of unactivated alkenes under transition metal-free conditions. Visible- or near-UV-light irradiation of readily available triarylbismuth dichlorides generates an aryl radical that selectively adds to the alkene, and the resulting homobenzyl radical is intercepted by an amine equivalent. This method offers a broad substrate scope and also enables the arylchlorination and arylcyanation of unactivated alkenes.</div></div>\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"10 10\",\"pages\":\"Pages 3243-3253\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451929424003796\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424003796","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Transition metal-free difunctionalization of unactivated alkenes: Arylation/azidation, arylation/chlorination, and arylation/cyanation
Arylethylamines represent a privileged scaffold in pharmaceutical compounds and form the backbone of many medical drugs, including those used for treating neurological diseases and pain. Their biomedical significance has inspired new synthetic methods that rely on transition metal-catalyzed aminoarylation reaction to an alkene, often in conjunction with a photoredox catalyst or a photosensitizer and guided by a directing or stabilizing group. Here, we introduce a simple and effective method for the azidoarylation of unactivated alkenes under transition metal-free conditions. Visible- or near-UV-light irradiation of readily available triarylbismuth dichlorides generates an aryl radical that selectively adds to the alkene, and the resulting homobenzyl radical is intercepted by an amine equivalent. This method offers a broad substrate scope and also enables the arylchlorination and arylcyanation of unactivated alkenes.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.