MadQCI:在生产设施中部署的异构、可扩展的 SDN-QKD 网络

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
V. Martin, J. P. Brito, L. Ortíz, R. B. Méndez, J. S. Buruaga, R. J. Vicente, A. Sebastián-Lombraña, D. Rincón, F. Pérez, C. Sánchez, M. Peev, H. H. Brunner, F. Fung, A. Poppe, F. Fröwis, A. J. Shields, R. I. Woodward, H. Griesser, S. Roehrich, F. de la Iglesia, C. Abellán, M. Hentschel, J. M. Rivas-Moscoso, A. Pastor-Perales, J. Folgueira, D. López
{"title":"MadQCI:在生产设施中部署的异构、可扩展的 SDN-QKD 网络","authors":"V. Martin, J. P. Brito, L. Ortíz, R. B. Méndez, J. S. Buruaga, R. J. Vicente, A. Sebastián-Lombraña, D. Rincón, F. Pérez, C. Sánchez, M. Peev, H. H. Brunner, F. Fung, A. Poppe, F. Fröwis, A. J. Shields, R. I. Woodward, H. Griesser, S. Roehrich, F. de la Iglesia, C. Abellán, M. Hentschel, J. M. Rivas-Moscoso, A. Pastor-Perales, J. Folgueira, D. López","doi":"10.1038/s41534-024-00873-2","DOIUrl":null,"url":null,"abstract":"<p>Current quantum key distribution (QKD) networks focus almost exclusively on transporting secret keys at the highest possible rate. Consequently, they are built as mostly fixed, ad hoc, logically, and physically isolated infrastructures designed to avoid any penalty to the quantum channel. This architecture is neither scalable nor cost-effective and future, real-world deployments will differ considerably. The structure of the MadQCI QKD network presented here is based on disaggregated components and modern paradigms especially designed for flexibility, upgradability, and facilitating the integration of QKD in the security and telecommunications-networks ecosystem. These underlying ideas have been tested by deploying many QKD systems from several manufacturers in a real-world, multi-tenant telecommunications network, installed in production facilities and sharing the infrastructure with commercial traffic. Different technologies have been used in different links to address the variety of situations and needs that arise in real networks, exploring a wide range of possibilities. Finally, a set of realistic use cases has been implemented to demonstrate the validity and performance of the network. The testing took place during a period close to three years, where most of the nodes were continuously active.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MadQCI: a heterogeneous and scalable SDN-QKD network deployed in production facilities\",\"authors\":\"V. Martin, J. P. Brito, L. Ortíz, R. B. Méndez, J. S. Buruaga, R. J. Vicente, A. Sebastián-Lombraña, D. Rincón, F. Pérez, C. Sánchez, M. Peev, H. H. Brunner, F. Fung, A. Poppe, F. Fröwis, A. J. Shields, R. I. Woodward, H. Griesser, S. Roehrich, F. de la Iglesia, C. Abellán, M. Hentschel, J. M. Rivas-Moscoso, A. Pastor-Perales, J. Folgueira, D. López\",\"doi\":\"10.1038/s41534-024-00873-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current quantum key distribution (QKD) networks focus almost exclusively on transporting secret keys at the highest possible rate. Consequently, they are built as mostly fixed, ad hoc, logically, and physically isolated infrastructures designed to avoid any penalty to the quantum channel. This architecture is neither scalable nor cost-effective and future, real-world deployments will differ considerably. The structure of the MadQCI QKD network presented here is based on disaggregated components and modern paradigms especially designed for flexibility, upgradability, and facilitating the integration of QKD in the security and telecommunications-networks ecosystem. These underlying ideas have been tested by deploying many QKD systems from several manufacturers in a real-world, multi-tenant telecommunications network, installed in production facilities and sharing the infrastructure with commercial traffic. Different technologies have been used in different links to address the variety of situations and needs that arise in real networks, exploring a wide range of possibilities. Finally, a set of realistic use cases has been implemented to demonstrate the validity and performance of the network. The testing took place during a period close to three years, where most of the nodes were continuously active.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00873-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00873-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

当前的量子密钥分发(QKD)网络几乎只专注于以尽可能高的速率传输密钥。因此,这些网络大多是固定的、临时的、逻辑上和物理上隔离的基础设施,旨在避免对量子信道造成任何影响。这种架构既不具备可扩展性,也不符合成本效益,未来在现实世界中的部署将大相径庭。本文介绍的 MadQCI QKD 网络结构基于分解组件和现代范式,特别设计用于灵活性、可升级性,以及促进 QKD 在安全和电信网络生态系统中的集成。通过在现实世界的多租户电信网络中部署多个制造商的 QKD 系统,对这些基本思想进行了测试,这些系统安装在生产设施中,与商业通信共享基础设施。在不同的环节中使用了不同的技术,以应对真实网络中出现的各种情况和需求,探索各种可能性。最后,还实施了一系列实际使用案例,以证明网络的有效性和性能。测试历时近三年,其中大部分节点都在持续运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MadQCI: a heterogeneous and scalable SDN-QKD network deployed in production facilities

MadQCI: a heterogeneous and scalable SDN-QKD network deployed in production facilities

Current quantum key distribution (QKD) networks focus almost exclusively on transporting secret keys at the highest possible rate. Consequently, they are built as mostly fixed, ad hoc, logically, and physically isolated infrastructures designed to avoid any penalty to the quantum channel. This architecture is neither scalable nor cost-effective and future, real-world deployments will differ considerably. The structure of the MadQCI QKD network presented here is based on disaggregated components and modern paradigms especially designed for flexibility, upgradability, and facilitating the integration of QKD in the security and telecommunications-networks ecosystem. These underlying ideas have been tested by deploying many QKD systems from several manufacturers in a real-world, multi-tenant telecommunications network, installed in production facilities and sharing the infrastructure with commercial traffic. Different technologies have been used in different links to address the variety of situations and needs that arise in real networks, exploring a wide range of possibilities. Finally, a set of realistic use cases has been implemented to demonstrate the validity and performance of the network. The testing took place during a period close to three years, where most of the nodes were continuously active.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信