{"title":"柱状大环分子定制晶粒笼稳定无机包光体太阳能电池,抑制卤化物偏析","authors":"Naimin Liu, Jialong Duan, Hui Li, Linzheng Ma, Bo Wang, Jiabao Li, Xingxing Duan, Qiyao Guo, Jie Dou, Shengwei Geng, Ya Liu, Chenlong Zhang, Yueji Liu, Benlin He, Xiya Yang, Qunwei Tang","doi":"10.1002/aenm.202402443","DOIUrl":null,"url":null,"abstract":"Solidifying the soft lattice of all-inorganic mixed-halide perovskites is of great importance to restrain the notorious halide segregation under persistent light illumination. Herein, a multifunctional columnar macrocyclic molecule additive, namely cucurbituril into perovskite precursor to enhance the crystallization and reduce the defect density in the final perovskite film is introduced. Based on the theoretical calculation and simulation, the cucurbituril molecule with a strong double-ended negatively-charged cavity surrounded by terminated oxygen atoms not only coordinates with dangling Pb<sup>2+</sup> ions to form host-guest complexation but also induces an electric dipole field at perovskite grain boundary to effectively repel the iodide ion migration from the inside grain to the defective boundary, significantly suppressing the halide segregation and improving the device performance. As a result, the carbon-based, all-inorganic CsPbI<sub>2</sub>Br solar cell achieves an enhanced efficiency of 15.59% with great tolerance to environmental stresses. These findings provide new insights into the development of a novel passivation strategy with macrocyclic molecules for making high-efficiency and stable perovskite solar cells.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"51 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Columnar Macrocyclic Molecule Tailored Grain Cage to Stabilize Inorganic Perovskite Solar Cells with Suppressed Halide Segregation\",\"authors\":\"Naimin Liu, Jialong Duan, Hui Li, Linzheng Ma, Bo Wang, Jiabao Li, Xingxing Duan, Qiyao Guo, Jie Dou, Shengwei Geng, Ya Liu, Chenlong Zhang, Yueji Liu, Benlin He, Xiya Yang, Qunwei Tang\",\"doi\":\"10.1002/aenm.202402443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solidifying the soft lattice of all-inorganic mixed-halide perovskites is of great importance to restrain the notorious halide segregation under persistent light illumination. Herein, a multifunctional columnar macrocyclic molecule additive, namely cucurbituril into perovskite precursor to enhance the crystallization and reduce the defect density in the final perovskite film is introduced. Based on the theoretical calculation and simulation, the cucurbituril molecule with a strong double-ended negatively-charged cavity surrounded by terminated oxygen atoms not only coordinates with dangling Pb<sup>2+</sup> ions to form host-guest complexation but also induces an electric dipole field at perovskite grain boundary to effectively repel the iodide ion migration from the inside grain to the defective boundary, significantly suppressing the halide segregation and improving the device performance. As a result, the carbon-based, all-inorganic CsPbI<sub>2</sub>Br solar cell achieves an enhanced efficiency of 15.59% with great tolerance to environmental stresses. These findings provide new insights into the development of a novel passivation strategy with macrocyclic molecules for making high-efficiency and stable perovskite solar cells.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202402443\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202402443","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Columnar Macrocyclic Molecule Tailored Grain Cage to Stabilize Inorganic Perovskite Solar Cells with Suppressed Halide Segregation
Solidifying the soft lattice of all-inorganic mixed-halide perovskites is of great importance to restrain the notorious halide segregation under persistent light illumination. Herein, a multifunctional columnar macrocyclic molecule additive, namely cucurbituril into perovskite precursor to enhance the crystallization and reduce the defect density in the final perovskite film is introduced. Based on the theoretical calculation and simulation, the cucurbituril molecule with a strong double-ended negatively-charged cavity surrounded by terminated oxygen atoms not only coordinates with dangling Pb2+ ions to form host-guest complexation but also induces an electric dipole field at perovskite grain boundary to effectively repel the iodide ion migration from the inside grain to the defective boundary, significantly suppressing the halide segregation and improving the device performance. As a result, the carbon-based, all-inorganic CsPbI2Br solar cell achieves an enhanced efficiency of 15.59% with great tolerance to environmental stresses. These findings provide new insights into the development of a novel passivation strategy with macrocyclic molecules for making high-efficiency and stable perovskite solar cells.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.