{"title":"基于平流热阻法的交叉波浪形一次表面换热器传热增强机理分析","authors":"Bo Zhang, Wenxiao Chu, Qiuwang Wang","doi":"10.1016/j.ijheatfluidflow.2024.109556","DOIUrl":null,"url":null,"abstract":"<div><p>This paper numerically investigates the flow and heat transfer characteristics in the primary surface heat exchanger (PSHE) with cross-wavy (CW) structures. The comprehensive performance affected by hydraulic diameters is evaluated. Moreover, the airflow shuttling behavior at the mixing area of CW-type PSHE is discussed, showing rapid heat transfer enhancement. The advection thermal resistance method and local thermal resistance analysis is proposed, while the impacts of longitudinal pitch and flowrates are considered. Results show that the case with a large hydraulic diameter displays much better comprehensive performance at lower flowrates. When raising the hydraulic diameter from 1.58 mm to 15.8 mm, the heat transfer rate per unit pumping power grows by 36.1 %. However, the priority of large channel is gradually disappeared after increasing the flowrates. Meanwhile, the larger longitudinal pitch of the CW channel may result in pronounced improvement on the heat transfer performance due to the presence of airflow shutting behavior at the mixing area as well as the secondary flow near the channel boundary layers. When no airflow shuttling exists, very high advection thermal resistance region can be observed due to the formation of boundary layers. It can be recognized that the case with airflow shuttling behavior can display similar heat transfer improvement compared to that with increasingly high Reynolds numbers, yet the pressure loss is rarely increased.</p></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"109 ","pages":"Article 109556"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis on heat transfer enhancement mechanism in a cross-wavy primary surface heat exchanger based on advection thermal resistance method\",\"authors\":\"Bo Zhang, Wenxiao Chu, Qiuwang Wang\",\"doi\":\"10.1016/j.ijheatfluidflow.2024.109556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper numerically investigates the flow and heat transfer characteristics in the primary surface heat exchanger (PSHE) with cross-wavy (CW) structures. The comprehensive performance affected by hydraulic diameters is evaluated. Moreover, the airflow shuttling behavior at the mixing area of CW-type PSHE is discussed, showing rapid heat transfer enhancement. The advection thermal resistance method and local thermal resistance analysis is proposed, while the impacts of longitudinal pitch and flowrates are considered. Results show that the case with a large hydraulic diameter displays much better comprehensive performance at lower flowrates. When raising the hydraulic diameter from 1.58 mm to 15.8 mm, the heat transfer rate per unit pumping power grows by 36.1 %. However, the priority of large channel is gradually disappeared after increasing the flowrates. Meanwhile, the larger longitudinal pitch of the CW channel may result in pronounced improvement on the heat transfer performance due to the presence of airflow shutting behavior at the mixing area as well as the secondary flow near the channel boundary layers. When no airflow shuttling exists, very high advection thermal resistance region can be observed due to the formation of boundary layers. It can be recognized that the case with airflow shuttling behavior can display similar heat transfer improvement compared to that with increasingly high Reynolds numbers, yet the pressure loss is rarely increased.</p></div>\",\"PeriodicalId\":335,\"journal\":{\"name\":\"International Journal of Heat and Fluid Flow\",\"volume\":\"109 \",\"pages\":\"Article 109556\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142727X24002819\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24002819","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Analysis on heat transfer enhancement mechanism in a cross-wavy primary surface heat exchanger based on advection thermal resistance method
This paper numerically investigates the flow and heat transfer characteristics in the primary surface heat exchanger (PSHE) with cross-wavy (CW) structures. The comprehensive performance affected by hydraulic diameters is evaluated. Moreover, the airflow shuttling behavior at the mixing area of CW-type PSHE is discussed, showing rapid heat transfer enhancement. The advection thermal resistance method and local thermal resistance analysis is proposed, while the impacts of longitudinal pitch and flowrates are considered. Results show that the case with a large hydraulic diameter displays much better comprehensive performance at lower flowrates. When raising the hydraulic diameter from 1.58 mm to 15.8 mm, the heat transfer rate per unit pumping power grows by 36.1 %. However, the priority of large channel is gradually disappeared after increasing the flowrates. Meanwhile, the larger longitudinal pitch of the CW channel may result in pronounced improvement on the heat transfer performance due to the presence of airflow shutting behavior at the mixing area as well as the secondary flow near the channel boundary layers. When no airflow shuttling exists, very high advection thermal resistance region can be observed due to the formation of boundary layers. It can be recognized that the case with airflow shuttling behavior can display similar heat transfer improvement compared to that with increasingly high Reynolds numbers, yet the pressure loss is rarely increased.
期刊介绍:
The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows.
Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.