{"title":"斯里兰卡红树林生态系统的碳储量:平均贡献和固碳潜力的决定因素","authors":"","doi":"10.1016/j.ocecoaman.2024.107357","DOIUrl":null,"url":null,"abstract":"<div><p>Mangroves are crucial in carbon sequestration despite covering only a small percentage of the Earth's surface. Latitudinal gradient primarily determines the distribution of climatic zones of distinct sunlight, temperature, and precipitation patterns, which influence the community structure of the mangrove ecosystem. The tropical climate of Sri Lanka contributes to the island's lush mangrove forests. The present study estimated that the average island's carbon sequestration capacity of Sri Lankan mangrove ecosystems is 524.25 t/ha representing a substantial volume of carbon storage that contributes to offset greenhouse effect due to increasing atmospheric CO<sub>2</sub>. Our results substantiated that rainfall positively influences total carbon sequestration capacity of mangrove ecosystems.</p><p>It was also revealed that a positive relationship exists between vegetation structural complexity and sediment organic carbon, highlighting the influence of vegetation structure, that is primarily dependent on climatic conditions, on production of organic matter and sediment carbon sequestration. Globally, the carbon sink function of mangrove ecosystems is reported to be highest in the tropical areas and it declines towards sub-tropical higher latitudes while those in the southern hemisphere perform better carbon sinks than those in the northern hemisphere.</p><p>The vertical distribution of total organic matter content in mangrove sediments was revealed to be in a descending order, manifesting the weak tidal removal of surface organic matter under the microtidal conditions in Sri Lankan marine waters, thus qualifying mangrove ecosystems in microtidal coasts as effective carbon sinks.</p></div>","PeriodicalId":54698,"journal":{"name":"Ocean & Coastal Management","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon stocks in mangrove ecosystems of Sri Lanka: Average contributions and determinants of sequestration potential\",\"authors\":\"\",\"doi\":\"10.1016/j.ocecoaman.2024.107357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mangroves are crucial in carbon sequestration despite covering only a small percentage of the Earth's surface. Latitudinal gradient primarily determines the distribution of climatic zones of distinct sunlight, temperature, and precipitation patterns, which influence the community structure of the mangrove ecosystem. The tropical climate of Sri Lanka contributes to the island's lush mangrove forests. The present study estimated that the average island's carbon sequestration capacity of Sri Lankan mangrove ecosystems is 524.25 t/ha representing a substantial volume of carbon storage that contributes to offset greenhouse effect due to increasing atmospheric CO<sub>2</sub>. Our results substantiated that rainfall positively influences total carbon sequestration capacity of mangrove ecosystems.</p><p>It was also revealed that a positive relationship exists between vegetation structural complexity and sediment organic carbon, highlighting the influence of vegetation structure, that is primarily dependent on climatic conditions, on production of organic matter and sediment carbon sequestration. Globally, the carbon sink function of mangrove ecosystems is reported to be highest in the tropical areas and it declines towards sub-tropical higher latitudes while those in the southern hemisphere perform better carbon sinks than those in the northern hemisphere.</p><p>The vertical distribution of total organic matter content in mangrove sediments was revealed to be in a descending order, manifesting the weak tidal removal of surface organic matter under the microtidal conditions in Sri Lankan marine waters, thus qualifying mangrove ecosystems in microtidal coasts as effective carbon sinks.</p></div>\",\"PeriodicalId\":54698,\"journal\":{\"name\":\"Ocean & Coastal Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean & Coastal Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0964569124003429\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean & Coastal Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964569124003429","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Carbon stocks in mangrove ecosystems of Sri Lanka: Average contributions and determinants of sequestration potential
Mangroves are crucial in carbon sequestration despite covering only a small percentage of the Earth's surface. Latitudinal gradient primarily determines the distribution of climatic zones of distinct sunlight, temperature, and precipitation patterns, which influence the community structure of the mangrove ecosystem. The tropical climate of Sri Lanka contributes to the island's lush mangrove forests. The present study estimated that the average island's carbon sequestration capacity of Sri Lankan mangrove ecosystems is 524.25 t/ha representing a substantial volume of carbon storage that contributes to offset greenhouse effect due to increasing atmospheric CO2. Our results substantiated that rainfall positively influences total carbon sequestration capacity of mangrove ecosystems.
It was also revealed that a positive relationship exists between vegetation structural complexity and sediment organic carbon, highlighting the influence of vegetation structure, that is primarily dependent on climatic conditions, on production of organic matter and sediment carbon sequestration. Globally, the carbon sink function of mangrove ecosystems is reported to be highest in the tropical areas and it declines towards sub-tropical higher latitudes while those in the southern hemisphere perform better carbon sinks than those in the northern hemisphere.
The vertical distribution of total organic matter content in mangrove sediments was revealed to be in a descending order, manifesting the weak tidal removal of surface organic matter under the microtidal conditions in Sri Lankan marine waters, thus qualifying mangrove ecosystems in microtidal coasts as effective carbon sinks.
期刊介绍:
Ocean & Coastal Management is the leading international journal dedicated to the study of all aspects of ocean and coastal management from the global to local levels.
We publish rigorously peer-reviewed manuscripts from all disciplines, and inter-/trans-disciplinary and co-designed research, but all submissions must make clear the relevance to management and/or governance issues relevant to the sustainable development and conservation of oceans and coasts.
Comparative studies (from sub-national to trans-national cases, and other management / policy arenas) are encouraged, as are studies that critically assess current management practices and governance approaches. Submissions involving robust analysis, development of theory, and improvement of management practice are especially welcome.