{"title":"电动汽车有序充电在碳减排中的价值","authors":"","doi":"10.1016/j.trd.2024.104383","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a bi-level model is developed to quantify the value of orderly electric vehicle (EV) charging in carbon reduction. Specifically, the upper-level model optimizes each EV driver’s charging schedule to diminish the total carbon emissions without impacting their travel plans, and the lower-level problem aims to fulfill electricity demands with minimal electricity dispatch cost. Based on real-world operation data obtained from 3,777 battery EVs (BEVs) in Shanghai over 11 months and local power plant data, the total carbon emissions generated by BEVs in Shanghai is calculated as 1,176,637 tons over this period, averaging 73 gCO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/km per BEV. By administering charging control to all BEVs in Shanghai, the above emission could be curtailed by 39%. Sensitivity analyses uncover that augmenting battery capacity and integrating wind power can significantly enhance emission reductions, while increasing the flexibility of the power plant might diminish the effectiveness of orderly EV charging.</p></div>","PeriodicalId":23277,"journal":{"name":"Transportation Research Part D-transport and Environment","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the value of orderly electric vehicle charging in carbon emission reduction\",\"authors\":\"\",\"doi\":\"10.1016/j.trd.2024.104383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a bi-level model is developed to quantify the value of orderly electric vehicle (EV) charging in carbon reduction. Specifically, the upper-level model optimizes each EV driver’s charging schedule to diminish the total carbon emissions without impacting their travel plans, and the lower-level problem aims to fulfill electricity demands with minimal electricity dispatch cost. Based on real-world operation data obtained from 3,777 battery EVs (BEVs) in Shanghai over 11 months and local power plant data, the total carbon emissions generated by BEVs in Shanghai is calculated as 1,176,637 tons over this period, averaging 73 gCO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/km per BEV. By administering charging control to all BEVs in Shanghai, the above emission could be curtailed by 39%. Sensitivity analyses uncover that augmenting battery capacity and integrating wind power can significantly enhance emission reductions, while increasing the flexibility of the power plant might diminish the effectiveness of orderly EV charging.</p></div>\",\"PeriodicalId\":23277,\"journal\":{\"name\":\"Transportation Research Part D-transport and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part D-transport and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361920924003407\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part D-transport and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361920924003407","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
On the value of orderly electric vehicle charging in carbon emission reduction
In this study, a bi-level model is developed to quantify the value of orderly electric vehicle (EV) charging in carbon reduction. Specifically, the upper-level model optimizes each EV driver’s charging schedule to diminish the total carbon emissions without impacting their travel plans, and the lower-level problem aims to fulfill electricity demands with minimal electricity dispatch cost. Based on real-world operation data obtained from 3,777 battery EVs (BEVs) in Shanghai over 11 months and local power plant data, the total carbon emissions generated by BEVs in Shanghai is calculated as 1,176,637 tons over this period, averaging 73 gCO/km per BEV. By administering charging control to all BEVs in Shanghai, the above emission could be curtailed by 39%. Sensitivity analyses uncover that augmenting battery capacity and integrating wind power can significantly enhance emission reductions, while increasing the flexibility of the power plant might diminish the effectiveness of orderly EV charging.
期刊介绍:
Transportation Research Part D: Transport and Environment focuses on original research exploring the environmental impacts of transportation, policy responses to these impacts, and their implications for transportation system design, planning, and management. The journal comprehensively covers the interaction between transportation and the environment, ranging from local effects on specific geographical areas to global implications such as natural resource depletion and atmospheric pollution.
We welcome research papers across all transportation modes, including maritime, air, and land transportation, assessing their environmental impacts broadly. Papers addressing both mobile aspects and transportation infrastructure are considered. The journal prioritizes empirical findings and policy responses of regulatory, planning, technical, or fiscal nature. Articles are policy-driven, accessible, and applicable to readers from diverse disciplines, emphasizing relevance and practicality. We encourage interdisciplinary submissions and welcome contributions from economically developing and advanced countries alike, reflecting our international orientation.