Shuguang Li , Ling Deng , Jierui Hu , Siyuan Kang , Jing Qiu , Qingkun Li
{"title":"评估共享转向系统中人机冲突的综合方法","authors":"Shuguang Li , Ling Deng , Jierui Hu , Siyuan Kang , Jing Qiu , Qingkun Li","doi":"10.1016/j.aap.2024.107758","DOIUrl":null,"url":null,"abstract":"<div><p>The shared control authority between drivers and the steering system may lead to human–machine conflicts, threatening both traffic safety and driving experience of collaborative driving systems. Previous evaluation methods relied on subjective judgment and had a singular set of evaluation criteria, making it challenging to obtain a comprehensive and objective assessment. Therefore, we propose a two-phase novel method that integrates eye-tracking data, electromyography signals and vehicle dynamic features to evaluate human–machine conflicts. Firstly, through driving simulation experiments, the correlations between subjective driving experience and objective indices are analyzed. Strongly correlated indices are screened as the effective criteria. In the second phase, the indices are integrated through sparse principal component analysis (SPCA) to formulate a comprehensive objective measure. Subjective driving experience collected from post-drive questionnaires was applied to examine its effectiveness. The results show that the error between the two sets of data is less than 7%, proving the effectives of the proposed method. This study provides a low-cost, high-efficiency method for evaluating human–machine conflicts, which contributes to the development of safer and more harmonious human–machine collaborative driving.</p></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"207 ","pages":"Article 107758"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive approach to evaluate human–machine conflicts in shared steering systems\",\"authors\":\"Shuguang Li , Ling Deng , Jierui Hu , Siyuan Kang , Jing Qiu , Qingkun Li\",\"doi\":\"10.1016/j.aap.2024.107758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The shared control authority between drivers and the steering system may lead to human–machine conflicts, threatening both traffic safety and driving experience of collaborative driving systems. Previous evaluation methods relied on subjective judgment and had a singular set of evaluation criteria, making it challenging to obtain a comprehensive and objective assessment. Therefore, we propose a two-phase novel method that integrates eye-tracking data, electromyography signals and vehicle dynamic features to evaluate human–machine conflicts. Firstly, through driving simulation experiments, the correlations between subjective driving experience and objective indices are analyzed. Strongly correlated indices are screened as the effective criteria. In the second phase, the indices are integrated through sparse principal component analysis (SPCA) to formulate a comprehensive objective measure. Subjective driving experience collected from post-drive questionnaires was applied to examine its effectiveness. The results show that the error between the two sets of data is less than 7%, proving the effectives of the proposed method. This study provides a low-cost, high-efficiency method for evaluating human–machine conflicts, which contributes to the development of safer and more harmonious human–machine collaborative driving.</p></div>\",\"PeriodicalId\":6926,\"journal\":{\"name\":\"Accident; analysis and prevention\",\"volume\":\"207 \",\"pages\":\"Article 107758\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accident; analysis and prevention\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001457524003038\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ERGONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457524003038","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
A comprehensive approach to evaluate human–machine conflicts in shared steering systems
The shared control authority between drivers and the steering system may lead to human–machine conflicts, threatening both traffic safety and driving experience of collaborative driving systems. Previous evaluation methods relied on subjective judgment and had a singular set of evaluation criteria, making it challenging to obtain a comprehensive and objective assessment. Therefore, we propose a two-phase novel method that integrates eye-tracking data, electromyography signals and vehicle dynamic features to evaluate human–machine conflicts. Firstly, through driving simulation experiments, the correlations between subjective driving experience and objective indices are analyzed. Strongly correlated indices are screened as the effective criteria. In the second phase, the indices are integrated through sparse principal component analysis (SPCA) to formulate a comprehensive objective measure. Subjective driving experience collected from post-drive questionnaires was applied to examine its effectiveness. The results show that the error between the two sets of data is less than 7%, proving the effectives of the proposed method. This study provides a low-cost, high-efficiency method for evaluating human–machine conflicts, which contributes to the development of safer and more harmonious human–machine collaborative driving.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.