竞争性网络双病毒传播:共存均衡的存在。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Axel Janson , Sebin Gracy , Philip E. Paré , Henrik Sandberg , Karl Henrik Johansson
{"title":"竞争性网络双病毒传播:共存均衡的存在。","authors":"Axel Janson ,&nbsp;Sebin Gracy ,&nbsp;Philip E. Paré ,&nbsp;Henrik Sandberg ,&nbsp;Karl Henrik Johansson","doi":"10.1016/j.mbs.2024.109286","DOIUrl":null,"url":null,"abstract":"<div><p>The paper studies multi-competitive continuous-time epidemic processes. We consider the setting where two viruses are simultaneously prevalent, and the spread occurs due to individual-to-individual interaction. In such a setting, an individual is either not affected by any of the viruses, or infected by one and exactly one of the two viruses. One of the equilibrium points is the <em>coexistence equilibrium</em>, i.e., multiple viruses simultaneously infect separate fractions of the population. We provide a sufficient condition for the existence of a coexistence equilibrium. We identify a condition such that for certain pairs of spread matrices either every coexistence equilibrium lies on a line that is locally exponentially attractive, or there is no coexistence equilibrium. We then provide a condition that, for certain pairs of spread matrices, rules out the possibility of the existence of a coexistence equilibrium, and, as a consequence, establishes global asymptotic convergence to the endemic equilibrium of the dominant virus. Finally, we provide a mitigation strategy that employs one virus to ensure that the other virus is eradicated. The theoretical results are illustrated using simulations.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Competitive networked bi-virus spread: Existence of coexistence equilibria\",\"authors\":\"Axel Janson ,&nbsp;Sebin Gracy ,&nbsp;Philip E. Paré ,&nbsp;Henrik Sandberg ,&nbsp;Karl Henrik Johansson\",\"doi\":\"10.1016/j.mbs.2024.109286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper studies multi-competitive continuous-time epidemic processes. We consider the setting where two viruses are simultaneously prevalent, and the spread occurs due to individual-to-individual interaction. In such a setting, an individual is either not affected by any of the viruses, or infected by one and exactly one of the two viruses. One of the equilibrium points is the <em>coexistence equilibrium</em>, i.e., multiple viruses simultaneously infect separate fractions of the population. We provide a sufficient condition for the existence of a coexistence equilibrium. We identify a condition such that for certain pairs of spread matrices either every coexistence equilibrium lies on a line that is locally exponentially attractive, or there is no coexistence equilibrium. We then provide a condition that, for certain pairs of spread matrices, rules out the possibility of the existence of a coexistence equilibrium, and, as a consequence, establishes global asymptotic convergence to the endemic equilibrium of the dominant virus. Finally, we provide a mitigation strategy that employs one virus to ensure that the other virus is eradicated. The theoretical results are illustrated using simulations.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424001469\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001469","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究多竞争连续时间流行过程。我们考虑了两种病毒同时流行的情况,传播是由于个体与个体之间的相互作用而发生的。在这种情况下,个体要么不受任何一种病毒的影响,要么恰好被两种病毒中的一种感染。其中一个平衡点是共存平衡,即多种病毒同时感染不同部分的人群。我们提供了共存均衡存在的充分条件。我们确定了一个条件,即对于某些传播矩阵对,要么每个共存均衡点都位于一条局部具有指数吸引力的直线上,要么就不存在共存均衡点。然后,我们提供了一个条件,对于某些传播矩阵对,它排除了共存均衡存在的可能性,并因此确定了向优势病毒流行均衡的全局渐进收敛。最后,我们提供了一种缓解策略,利用一种病毒确保另一种病毒被消灭。理论结果将通过模拟加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Competitive networked bi-virus spread: Existence of coexistence equilibria

The paper studies multi-competitive continuous-time epidemic processes. We consider the setting where two viruses are simultaneously prevalent, and the spread occurs due to individual-to-individual interaction. In such a setting, an individual is either not affected by any of the viruses, or infected by one and exactly one of the two viruses. One of the equilibrium points is the coexistence equilibrium, i.e., multiple viruses simultaneously infect separate fractions of the population. We provide a sufficient condition for the existence of a coexistence equilibrium. We identify a condition such that for certain pairs of spread matrices either every coexistence equilibrium lies on a line that is locally exponentially attractive, or there is no coexistence equilibrium. We then provide a condition that, for certain pairs of spread matrices, rules out the possibility of the existence of a coexistence equilibrium, and, as a consequence, establishes global asymptotic convergence to the endemic equilibrium of the dominant virus. Finally, we provide a mitigation strategy that employs one virus to ensure that the other virus is eradicated. The theoretical results are illustrated using simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信