Tongrui Zhang, Jun Li, Guangli Wang, Huafeng Li, Gesheng Song, Kai Deng
{"title":"基于计算机断层扫描的放射组学分析结合肺癌血清肿瘤标记物在肺鳞癌和肺腺癌鉴别中的应用。","authors":"Tongrui Zhang, Jun Li, Guangli Wang, Huafeng Li, Gesheng Song, Kai Deng","doi":"10.4103/jcrt.jcrt_79_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To establish a prediction model of lung cancer classification by computed tomography (CT) radiomics with the serum tumor markers (STM) of lung cancer.</p><p><strong>Materials and methods: </strong>Two-hundred NSCLC patients were enrolled in our study. Clinical data including age, sex, and STM (squamous cell carcinoma [SCC], neuron-specific enolase [NSE], carcinoembryonic antigen [CEA], pro-gastrin-releasing peptide [PRO-GRP], and cytokeratin 19 fragment [cYFRA21-1]) were collected. A radiomics signature was generated from the training set using the least absolute shrinkage and selection operator (LASSO) algorithm. The risk factors were identified using multivariate logistic regression analysis, and a radiomics nomogram based on the radiomics signature and clinical features was constructed. The capability of the nomogram was evaluated using the training set and validated using the validation set. A correction curve and the Hosmer-Lemeshow test were used to evaluate the predictive performance of the radiomics model for the training and test sets.</p><p><strong>Results: </strong>Twenty-nine of 1234 radiomics parameters were screened as important factors for establishing the radiomics model. The training (area under the curve [AUC] = 0.925; 95% confidence interval [CI]: 0.885-0.966) and validation sets (AUC = 0.921; 95% CI: 0.854-0.989) showed that the CT radiomics signature, combined with STM, accurately predicted lung squamous cell carcinoma and lung adenocarcinoma. Moreover, the logistic regression model showed good performance based on the Hosmer-Lemeshow test in the training (P = 0.954) and test sets (P = 0.340). Good calibration curve consistency also indicated the good performance of the nomogram.</p><p><strong>Conclusion: </strong>The combination of the CT radiomics signature and lung cancer STM performed well for the pathological classification of NSCLC. Compared with the radiomics signature method, the nomogram based on the radiomics signature and clinical factors had better performance for the differential diagnosis of NSCLC.</p>","PeriodicalId":94070,"journal":{"name":"Journal of cancer research and therapeutics","volume":"20 4","pages":"1186-1194"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of computed tomography-based radiomics analysis combined with lung cancer serum tumor markers in the identification of lung squamous cell carcinoma and lung adenocarcinoma.\",\"authors\":\"Tongrui Zhang, Jun Li, Guangli Wang, Huafeng Li, Gesheng Song, Kai Deng\",\"doi\":\"10.4103/jcrt.jcrt_79_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To establish a prediction model of lung cancer classification by computed tomography (CT) radiomics with the serum tumor markers (STM) of lung cancer.</p><p><strong>Materials and methods: </strong>Two-hundred NSCLC patients were enrolled in our study. Clinical data including age, sex, and STM (squamous cell carcinoma [SCC], neuron-specific enolase [NSE], carcinoembryonic antigen [CEA], pro-gastrin-releasing peptide [PRO-GRP], and cytokeratin 19 fragment [cYFRA21-1]) were collected. A radiomics signature was generated from the training set using the least absolute shrinkage and selection operator (LASSO) algorithm. The risk factors were identified using multivariate logistic regression analysis, and a radiomics nomogram based on the radiomics signature and clinical features was constructed. The capability of the nomogram was evaluated using the training set and validated using the validation set. A correction curve and the Hosmer-Lemeshow test were used to evaluate the predictive performance of the radiomics model for the training and test sets.</p><p><strong>Results: </strong>Twenty-nine of 1234 radiomics parameters were screened as important factors for establishing the radiomics model. The training (area under the curve [AUC] = 0.925; 95% confidence interval [CI]: 0.885-0.966) and validation sets (AUC = 0.921; 95% CI: 0.854-0.989) showed that the CT radiomics signature, combined with STM, accurately predicted lung squamous cell carcinoma and lung adenocarcinoma. Moreover, the logistic regression model showed good performance based on the Hosmer-Lemeshow test in the training (P = 0.954) and test sets (P = 0.340). Good calibration curve consistency also indicated the good performance of the nomogram.</p><p><strong>Conclusion: </strong>The combination of the CT radiomics signature and lung cancer STM performed well for the pathological classification of NSCLC. Compared with the radiomics signature method, the nomogram based on the radiomics signature and clinical factors had better performance for the differential diagnosis of NSCLC.</p>\",\"PeriodicalId\":94070,\"journal\":{\"name\":\"Journal of cancer research and therapeutics\",\"volume\":\"20 4\",\"pages\":\"1186-1194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cancer research and therapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jcrt.jcrt_79_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cancer research and therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jcrt.jcrt_79_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Application of computed tomography-based radiomics analysis combined with lung cancer serum tumor markers in the identification of lung squamous cell carcinoma and lung adenocarcinoma.
Objective: To establish a prediction model of lung cancer classification by computed tomography (CT) radiomics with the serum tumor markers (STM) of lung cancer.
Materials and methods: Two-hundred NSCLC patients were enrolled in our study. Clinical data including age, sex, and STM (squamous cell carcinoma [SCC], neuron-specific enolase [NSE], carcinoembryonic antigen [CEA], pro-gastrin-releasing peptide [PRO-GRP], and cytokeratin 19 fragment [cYFRA21-1]) were collected. A radiomics signature was generated from the training set using the least absolute shrinkage and selection operator (LASSO) algorithm. The risk factors were identified using multivariate logistic regression analysis, and a radiomics nomogram based on the radiomics signature and clinical features was constructed. The capability of the nomogram was evaluated using the training set and validated using the validation set. A correction curve and the Hosmer-Lemeshow test were used to evaluate the predictive performance of the radiomics model for the training and test sets.
Results: Twenty-nine of 1234 radiomics parameters were screened as important factors for establishing the radiomics model. The training (area under the curve [AUC] = 0.925; 95% confidence interval [CI]: 0.885-0.966) and validation sets (AUC = 0.921; 95% CI: 0.854-0.989) showed that the CT radiomics signature, combined with STM, accurately predicted lung squamous cell carcinoma and lung adenocarcinoma. Moreover, the logistic regression model showed good performance based on the Hosmer-Lemeshow test in the training (P = 0.954) and test sets (P = 0.340). Good calibration curve consistency also indicated the good performance of the nomogram.
Conclusion: The combination of the CT radiomics signature and lung cancer STM performed well for the pathological classification of NSCLC. Compared with the radiomics signature method, the nomogram based on the radiomics signature and clinical factors had better performance for the differential diagnosis of NSCLC.