用 GHz 飞秒脉冲激发并通过深度学习去噪的镜头噪声受限非线性光学成像。

Wenlong Wang, Junpeng Wen, Yuke Sheng, Chiyi Wei, Cihang Kong, Yalong Liu, Xiaoming Wei, Zhongmin Yang
{"title":"用 GHz 飞秒脉冲激发并通过深度学习去噪的镜头噪声受限非线性光学成像。","authors":"Wenlong Wang, Junpeng Wen, Yuke Sheng, Chiyi Wei, Cihang Kong, Yalong Liu, Xiaoming Wei, Zhongmin Yang","doi":"10.1002/jbio.202400186","DOIUrl":null,"url":null,"abstract":"<p><p>Multiphoton fluorescence microscopy excited with femtosecond pulses at high repetition rates, particularly in the range of 100's MHz to GHz, offers an alternative solution to suppress photoinduced damage to biological samples, for example, photobleaching. Here, we demonstrate the use of a U-Net-based deep-learning algorithm for suppressing the inherent shot noise of the two-photon fluorescence images excited with GHz femtosecond pulses. With the trained denoising neural network, the image quality of the representative two-photon fluorescence images of the biological samples is shown to be significantly improved. Moreover, for input raw images with even SNR reduced to -4.76 dB, the trained denoising network can recover the main image structure from noise floor with acceptable fidelity and spatial resolution. It is anticipated that the combination of GHz femtosecond pulses and deep-learning denoising algorithm can be a promising solution for eliminating the trade-off between photoinduced damage and image quality in nonlinear optical imaging platforms.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shot-Noise Limited Nonlinear Optical Imaging Excited With GHz Femtosecond Pulses and Denoised by Deep-Learning.\",\"authors\":\"Wenlong Wang, Junpeng Wen, Yuke Sheng, Chiyi Wei, Cihang Kong, Yalong Liu, Xiaoming Wei, Zhongmin Yang\",\"doi\":\"10.1002/jbio.202400186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiphoton fluorescence microscopy excited with femtosecond pulses at high repetition rates, particularly in the range of 100's MHz to GHz, offers an alternative solution to suppress photoinduced damage to biological samples, for example, photobleaching. Here, we demonstrate the use of a U-Net-based deep-learning algorithm for suppressing the inherent shot noise of the two-photon fluorescence images excited with GHz femtosecond pulses. With the trained denoising neural network, the image quality of the representative two-photon fluorescence images of the biological samples is shown to be significantly improved. Moreover, for input raw images with even SNR reduced to -4.76 dB, the trained denoising network can recover the main image structure from noise floor with acceptable fidelity and spatial resolution. It is anticipated that the combination of GHz femtosecond pulses and deep-learning denoising algorithm can be a promising solution for eliminating the trade-off between photoinduced damage and image quality in nonlinear optical imaging platforms.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202400186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用高重复率飞秒脉冲激发的多光子荧光显微镜,尤其是在 100's MHz 到 GHz 范围内,为抑制光诱导对生物样本的损伤(例如光漂白)提供了另一种解决方案。在这里,我们展示了如何使用基于 U-Net 的深度学习算法来抑制用 GHz 飞秒脉冲激发的双光子荧光图像的固有光斑噪声。通过训练有素的去噪神经网络,生物样本的代表性双光子荧光图像的质量得到了显著改善。此外,对于信噪比甚至降低到-4.76 dB的输入原始图像,训练有素的去噪网络能以可接受的保真度和空间分辨率从噪底恢复主要图像结构。预计将 GHz 飞秒脉冲与深度学习去噪算法相结合,将是消除非线性光学成像平台中光致损伤与图像质量之间权衡的一种有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shot-Noise Limited Nonlinear Optical Imaging Excited With GHz Femtosecond Pulses and Denoised by Deep-Learning.

Multiphoton fluorescence microscopy excited with femtosecond pulses at high repetition rates, particularly in the range of 100's MHz to GHz, offers an alternative solution to suppress photoinduced damage to biological samples, for example, photobleaching. Here, we demonstrate the use of a U-Net-based deep-learning algorithm for suppressing the inherent shot noise of the two-photon fluorescence images excited with GHz femtosecond pulses. With the trained denoising neural network, the image quality of the representative two-photon fluorescence images of the biological samples is shown to be significantly improved. Moreover, for input raw images with even SNR reduced to -4.76 dB, the trained denoising network can recover the main image structure from noise floor with acceptable fidelity and spatial resolution. It is anticipated that the combination of GHz femtosecond pulses and deep-learning denoising algorithm can be a promising solution for eliminating the trade-off between photoinduced damage and image quality in nonlinear optical imaging platforms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信