从单细胞测序数据推断同种型B细胞克隆系谱树。

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2024-09-11 Epub Date: 2024-08-28 DOI:10.1016/j.xgen.2024.100637
Leah L Weber, Derek Reiman, Mrinmoy S Roddur, Yuanyuan Qi, Mohammed El-Kebir, Aly A Khan
{"title":"从单细胞测序数据推断同种型B细胞克隆系谱树。","authors":"Leah L Weber, Derek Reiman, Mrinmoy S Roddur, Yuanyuan Qi, Mohammed El-Kebir, Aly A Khan","doi":"10.1016/j.xgen.2024.100637","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) enables comprehensive characterization of the micro-evolutionary processes of B cells during an adaptive immune response, capturing features of somatic hypermutation (SHM) and class switch recombination (CSR). Existing phylogenetic approaches for reconstructing B cell evolution have primarily focused on the SHM process alone. Here, we present tree inference of B cell clonal lineages (TRIBAL), an algorithm designed to optimally reconstruct the evolutionary history of B cell clonal lineages undergoing both SHM and CSR from scRNA-seq data. Through simulations, we demonstrate that TRIBAL produces more comprehensive and accurate B cell lineage trees compared to existing methods. Using real-world datasets, TRIBAL successfully recapitulates expected biological trends in a model affinity maturation system while reconstructing evolutionary histories with more parsimonious class switching than state-of-the-art methods. Thus, TRIBAL significantly improves B cell lineage tracing, useful for modeling vaccine responses, disease progression, and the identification of therapeutic antibodies.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100637"},"PeriodicalIF":11.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480863/pdf/","citationCount":"0","resultStr":"{\"title\":\"Isotype-aware inference of B cell clonal lineage trees from single-cell sequencing data.\",\"authors\":\"Leah L Weber, Derek Reiman, Mrinmoy S Roddur, Yuanyuan Qi, Mohammed El-Kebir, Aly A Khan\",\"doi\":\"10.1016/j.xgen.2024.100637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell RNA sequencing (scRNA-seq) enables comprehensive characterization of the micro-evolutionary processes of B cells during an adaptive immune response, capturing features of somatic hypermutation (SHM) and class switch recombination (CSR). Existing phylogenetic approaches for reconstructing B cell evolution have primarily focused on the SHM process alone. Here, we present tree inference of B cell clonal lineages (TRIBAL), an algorithm designed to optimally reconstruct the evolutionary history of B cell clonal lineages undergoing both SHM and CSR from scRNA-seq data. Through simulations, we demonstrate that TRIBAL produces more comprehensive and accurate B cell lineage trees compared to existing methods. Using real-world datasets, TRIBAL successfully recapitulates expected biological trends in a model affinity maturation system while reconstructing evolutionary histories with more parsimonious class switching than state-of-the-art methods. Thus, TRIBAL significantly improves B cell lineage tracing, useful for modeling vaccine responses, disease progression, and the identification of therapeutic antibodies.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100637\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480863/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2024.100637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单细胞 RNA 测序(scRNA-seq)能全面描述适应性免疫反应过程中 B 细胞的微进化过程,捕捉体细胞超突变(SHM)和类开关重组(CSR)的特征。现有的重建 B 细胞进化的系统发生学方法主要只关注 SHM 过程。在这里,我们介绍了B细胞克隆系的树推断(TRIBAL),这是一种旨在从scRNA-seq数据中优化重建同时经历SHM和CSR的B细胞克隆系进化史的算法。通过模拟,我们证明与现有方法相比,TRIBAL 能生成更全面、更准确的 B 细胞系树。利用真实世界的数据集,TRIBAL 成功地再现了模型亲和力成熟系统中预期的生物学趋势,同时与最先进的方法相比,TRIBAL 以更简洁的类别切换重建了进化史。因此,TRIBAL 显著改善了 B 细胞系的追踪,对疫苗反应建模、疾病进展和治疗性抗体的鉴定非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isotype-aware inference of B cell clonal lineage trees from single-cell sequencing data.

Single-cell RNA sequencing (scRNA-seq) enables comprehensive characterization of the micro-evolutionary processes of B cells during an adaptive immune response, capturing features of somatic hypermutation (SHM) and class switch recombination (CSR). Existing phylogenetic approaches for reconstructing B cell evolution have primarily focused on the SHM process alone. Here, we present tree inference of B cell clonal lineages (TRIBAL), an algorithm designed to optimally reconstruct the evolutionary history of B cell clonal lineages undergoing both SHM and CSR from scRNA-seq data. Through simulations, we demonstrate that TRIBAL produces more comprehensive and accurate B cell lineage trees compared to existing methods. Using real-world datasets, TRIBAL successfully recapitulates expected biological trends in a model affinity maturation system while reconstructing evolutionary histories with more parsimonious class switching than state-of-the-art methods. Thus, TRIBAL significantly improves B cell lineage tracing, useful for modeling vaccine responses, disease progression, and the identification of therapeutic antibodies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信