Abdul Rauf Khan, Zafar Ullah, Muhammad Imran, Muhammad Salman, Arooj Zia, Fairouz Tchier, Shahid Hussain
{"title":"基于度数的金刚石晶体拓扑指数和熵。","authors":"Abdul Rauf Khan, Zafar Ullah, Muhammad Imran, Muhammad Salman, Arooj Zia, Fairouz Tchier, Shahid Hussain","doi":"10.1177/00368504241271719","DOIUrl":null,"url":null,"abstract":"<p><p>High hardness, low friction coefficient and chemical resistance are only a few of the exceptional mechanical qualities of diamond. Diamonds can be artificially created to have different levels of conductivity, or they can be single, micro or nanocrystalline and highly electrically insulating. It also has high biocompatibility and is famous for being mechanically robust. Due to its high hardness, lack of ductility and difficulty in welding, diamond is a challenging material to construct devices with. Diamonds have experienced a rise in attention as a biological material in recent decades due to new synthesis and fabrication techniques that have eliminated some of these disadvantages. In general, entropic measurements are used for investigating the chemical or biological properties of molecular structures. This study calculates several important <math><mi>K</mi></math>-Banhatti entropies, redefined Zagreb entropies and atom-bond sum connectivity entropy for diamond crystals. We also present a numeric and graphical explanations of obtain indices.</p>","PeriodicalId":56061,"journal":{"name":"Science Progress","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367704/pdf/","citationCount":"0","resultStr":"{\"title\":\"Degree-based topological indices and entropies of diamond crystals.\",\"authors\":\"Abdul Rauf Khan, Zafar Ullah, Muhammad Imran, Muhammad Salman, Arooj Zia, Fairouz Tchier, Shahid Hussain\",\"doi\":\"10.1177/00368504241271719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High hardness, low friction coefficient and chemical resistance are only a few of the exceptional mechanical qualities of diamond. Diamonds can be artificially created to have different levels of conductivity, or they can be single, micro or nanocrystalline and highly electrically insulating. It also has high biocompatibility and is famous for being mechanically robust. Due to its high hardness, lack of ductility and difficulty in welding, diamond is a challenging material to construct devices with. Diamonds have experienced a rise in attention as a biological material in recent decades due to new synthesis and fabrication techniques that have eliminated some of these disadvantages. In general, entropic measurements are used for investigating the chemical or biological properties of molecular structures. This study calculates several important <math><mi>K</mi></math>-Banhatti entropies, redefined Zagreb entropies and atom-bond sum connectivity entropy for diamond crystals. We also present a numeric and graphical explanations of obtain indices.</p>\",\"PeriodicalId\":56061,\"journal\":{\"name\":\"Science Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367704/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Progress\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1177/00368504241271719\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Progress","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1177/00368504241271719","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Degree-based topological indices and entropies of diamond crystals.
High hardness, low friction coefficient and chemical resistance are only a few of the exceptional mechanical qualities of diamond. Diamonds can be artificially created to have different levels of conductivity, or they can be single, micro or nanocrystalline and highly electrically insulating. It also has high biocompatibility and is famous for being mechanically robust. Due to its high hardness, lack of ductility and difficulty in welding, diamond is a challenging material to construct devices with. Diamonds have experienced a rise in attention as a biological material in recent decades due to new synthesis and fabrication techniques that have eliminated some of these disadvantages. In general, entropic measurements are used for investigating the chemical or biological properties of molecular structures. This study calculates several important -Banhatti entropies, redefined Zagreb entropies and atom-bond sum connectivity entropy for diamond crystals. We also present a numeric and graphical explanations of obtain indices.
期刊介绍:
Science Progress has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers'' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field.