人工智能驱动的半定量隐球菌抗原侧流分析移动解读。

IF 5.2 1区 生物学 Q1 MYCOLOGY
David Bermejo-Peláez, Ana Alastruey-Izquierdo, Narda Medina, Daniel Capellán-Martín, Oscar Bonilla, Miguel Luengo-Oroz, Juan Luis Rodríguez-Tudela
{"title":"人工智能驱动的半定量隐球菌抗原侧流分析移动解读。","authors":"David Bermejo-Peláez, Ana Alastruey-Izquierdo, Narda Medina, Daniel Capellán-Martín, Oscar Bonilla, Miguel Luengo-Oroz, Juan Luis Rodríguez-Tudela","doi":"10.1186/s43008-024-00158-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Cryptococcosis remains a severe global health concern, underscoring the urgent need for rapid and reliable diagnostic solutions. Point-of-care tests (POCTs), such as the cryptococcal antigen semi-quantitative (CrAgSQ) lateral flow assay (LFA), offer promise in addressing this challenge. However, their subjective interpretation poses a limitation. Our objectives encompass the development and validation of a digital platform based on Artificial Intelligence (AI), assessing its semi-quantitative LFA interpretation performance, and exploring its potential to quantify CrAg concentrations directly from LFA images.</p><p><strong>Methods: </strong>We tested 53 cryptococcal antigen (CrAg) concentrations spanning from 0 to 5000 ng/ml. A total of 318 CrAgSQ LFAs were inoculated and systematically photographed twice, employing two distinct smartphones, resulting in a dataset of 1272 images. We developed an AI algorithm designed for the automated interpretation of CrAgSQ LFAs. Concurrently, we explored the relationship between quantified test line intensities and CrAg concentrations.</p><p><strong>Results: </strong>Our algorithm surpasses visual reading in sensitivity, and shows fewer discrepancies (p < 0.0001). The system exhibited capability of predicting CrAg concentrations exclusively based on a photograph of the LFA (Pearson correlation coefficient of 0.85).</p><p><strong>Conclusions: </strong>This technology's adaptability for various LFAs suggests broader applications. AI-driven interpretations have transformative potential, revolutionizing cryptococcosis diagnosis, offering standardized, reliable, and efficient POCT results.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"15 1","pages":"27"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365246/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-driven mobile interpretation of a semi-quantitative cryptococcal antigen lateral flow assay.\",\"authors\":\"David Bermejo-Peláez, Ana Alastruey-Izquierdo, Narda Medina, Daniel Capellán-Martín, Oscar Bonilla, Miguel Luengo-Oroz, Juan Luis Rodríguez-Tudela\",\"doi\":\"10.1186/s43008-024-00158-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Cryptococcosis remains a severe global health concern, underscoring the urgent need for rapid and reliable diagnostic solutions. Point-of-care tests (POCTs), such as the cryptococcal antigen semi-quantitative (CrAgSQ) lateral flow assay (LFA), offer promise in addressing this challenge. However, their subjective interpretation poses a limitation. Our objectives encompass the development and validation of a digital platform based on Artificial Intelligence (AI), assessing its semi-quantitative LFA interpretation performance, and exploring its potential to quantify CrAg concentrations directly from LFA images.</p><p><strong>Methods: </strong>We tested 53 cryptococcal antigen (CrAg) concentrations spanning from 0 to 5000 ng/ml. A total of 318 CrAgSQ LFAs were inoculated and systematically photographed twice, employing two distinct smartphones, resulting in a dataset of 1272 images. We developed an AI algorithm designed for the automated interpretation of CrAgSQ LFAs. Concurrently, we explored the relationship between quantified test line intensities and CrAg concentrations.</p><p><strong>Results: </strong>Our algorithm surpasses visual reading in sensitivity, and shows fewer discrepancies (p < 0.0001). The system exhibited capability of predicting CrAg concentrations exclusively based on a photograph of the LFA (Pearson correlation coefficient of 0.85).</p><p><strong>Conclusions: </strong>This technology's adaptability for various LFAs suggests broader applications. AI-driven interpretations have transformative potential, revolutionizing cryptococcosis diagnosis, offering standardized, reliable, and efficient POCT results.</p>\",\"PeriodicalId\":54345,\"journal\":{\"name\":\"Ima Fungus\",\"volume\":\"15 1\",\"pages\":\"27\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365246/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ima Fungus\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s43008-024-00158-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ima Fungus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s43008-024-00158-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:隐球菌病仍然是全球严重的健康问题,因此迫切需要快速可靠的诊断解决方案。隐球菌抗原半定量(CrAgSQ)侧流检测法(LFA)等床旁检测(POCT)有望解决这一难题。但是,它们的主观解释存在局限性。我们的目标包括开发和验证基于人工智能(AI)的数字平台,评估其半定量 LFA 解释性能,并探索其直接从 LFA 图像量化 CrAg 浓度的潜力:我们测试了 53 种隐球菌抗原(CrAg)浓度,范围从 0 到 5000 ng/ml。我们共接种了 318 个 CrAgSQ LFA,并使用两部不同的智能手机系统地拍摄了两次,得到了 1272 张图像的数据集。我们开发了一种人工智能算法,用于自动解读 CrAgSQ LFAs。同时,我们还探索了量化检测线强度与 CrAg 浓度之间的关系:结果:我们的算法在灵敏度上超过了目测读数,并且显示出较少的差异(p):该技术对各种 LFA 的适应性表明其应用范围更广。人工智能驱动的解释具有变革潜力,能彻底改变隐球菌病诊断,提供标准化、可靠和高效的 POCT 结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence-driven mobile interpretation of a semi-quantitative cryptococcal antigen lateral flow assay.

Objectives: Cryptococcosis remains a severe global health concern, underscoring the urgent need for rapid and reliable diagnostic solutions. Point-of-care tests (POCTs), such as the cryptococcal antigen semi-quantitative (CrAgSQ) lateral flow assay (LFA), offer promise in addressing this challenge. However, their subjective interpretation poses a limitation. Our objectives encompass the development and validation of a digital platform based on Artificial Intelligence (AI), assessing its semi-quantitative LFA interpretation performance, and exploring its potential to quantify CrAg concentrations directly from LFA images.

Methods: We tested 53 cryptococcal antigen (CrAg) concentrations spanning from 0 to 5000 ng/ml. A total of 318 CrAgSQ LFAs were inoculated and systematically photographed twice, employing two distinct smartphones, resulting in a dataset of 1272 images. We developed an AI algorithm designed for the automated interpretation of CrAgSQ LFAs. Concurrently, we explored the relationship between quantified test line intensities and CrAg concentrations.

Results: Our algorithm surpasses visual reading in sensitivity, and shows fewer discrepancies (p < 0.0001). The system exhibited capability of predicting CrAg concentrations exclusively based on a photograph of the LFA (Pearson correlation coefficient of 0.85).

Conclusions: This technology's adaptability for various LFAs suggests broader applications. AI-driven interpretations have transformative potential, revolutionizing cryptococcosis diagnosis, offering standardized, reliable, and efficient POCT results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ima Fungus
Ima Fungus Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
11.00
自引率
3.70%
发文量
18
审稿时长
20 weeks
期刊介绍: The flagship journal of the International Mycological Association. IMA Fungus is an international, peer-reviewed, open-access, full colour, fast-track journal. Papers on any aspect of mycology are considered, and published on-line with final pagination after proofs have been corrected; they are then effectively published under the International Code of Nomenclature for algae, fungi, and plants. The journal strongly supports good practice policies, and requires voucher specimens or cultures to be deposited in a public collection with an online database, DNA sequences in GenBank, alignments in TreeBASE, and validating information on new scientific names, including typifications, to be lodged in MycoBank. News, meeting reports, personalia, research news, correspondence, book news, and information on forthcoming international meetings are included in each issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信