Weicai Song, Wenbo Shi, Huan Wang, Zirui Zhang, Ruiqing Tao, Jin Liu, Shuo Wang, Michael S Engel, Chao Shi
{"title":"对 12 个睡莲质粒基因组的比较分析揭示了早期开花植物的基因组分化和进化关系。","authors":"Weicai Song, Wenbo Shi, Huan Wang, Zirui Zhang, Ruiqing Tao, Jin Liu, Shuo Wang, Michael S Engel, Chao Shi","doi":"10.1007/s42995-024-00242-0","DOIUrl":null,"url":null,"abstract":"<p><p>The aquatic plant <i>Nymphaea</i>, a model genus of the early flowering plant lineage Nymphaeales and family Nymphaeaceae, has been extensively studied. However, the availability of chloroplast genome data for this genus is incomplete, and phylogenetic relationships within the order Nymphaeales remain controversial. In this study, 12 chloroplast genomes of <i>Nymphaea</i> were assembled and analyzed for the first time. These genomes were 158,290-160,042 bp in size and contained 113 non-repeat genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. We also report on codon usage, RNA editing sites, microsatellite structures, and new repetitive sequences in this genus. Comparative genomics revealed that expansion and contraction of IR regions can lead to changes in the gene numbers. Additionally, it was observed that the highly variable regions of the chloroplast genome were mainly located in intergenic regions. Furthermore, the phylogenetic tree showed the order Nymphaeales was divided into three families, and the genus <i>Nymphaea</i> can be divided into five (or three) subgenera, with the subgenus <i>Nymphaea</i> being the oldest. The divergence times of nymphaealean taxa were analyzed, with origins of the order Nymphaeales and family Nymphaeaceae being about 194 and 131 million years, respectively. The results of the phylogenetic analysis and estimated divergence times will be useful for future evolutionary studies of basal angiosperm lineages.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-024-00242-0.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"6 3","pages":"425-441"},"PeriodicalIF":5.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358372/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of 12 water lily plastid genomes reveals genomic divergence and evolutionary relationships in early flowering plants.\",\"authors\":\"Weicai Song, Wenbo Shi, Huan Wang, Zirui Zhang, Ruiqing Tao, Jin Liu, Shuo Wang, Michael S Engel, Chao Shi\",\"doi\":\"10.1007/s42995-024-00242-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aquatic plant <i>Nymphaea</i>, a model genus of the early flowering plant lineage Nymphaeales and family Nymphaeaceae, has been extensively studied. However, the availability of chloroplast genome data for this genus is incomplete, and phylogenetic relationships within the order Nymphaeales remain controversial. In this study, 12 chloroplast genomes of <i>Nymphaea</i> were assembled and analyzed for the first time. These genomes were 158,290-160,042 bp in size and contained 113 non-repeat genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. We also report on codon usage, RNA editing sites, microsatellite structures, and new repetitive sequences in this genus. Comparative genomics revealed that expansion and contraction of IR regions can lead to changes in the gene numbers. Additionally, it was observed that the highly variable regions of the chloroplast genome were mainly located in intergenic regions. Furthermore, the phylogenetic tree showed the order Nymphaeales was divided into three families, and the genus <i>Nymphaea</i> can be divided into five (or three) subgenera, with the subgenus <i>Nymphaea</i> being the oldest. The divergence times of nymphaealean taxa were analyzed, with origins of the order Nymphaeales and family Nymphaeaceae being about 194 and 131 million years, respectively. The results of the phylogenetic analysis and estimated divergence times will be useful for future evolutionary studies of basal angiosperm lineages.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-024-00242-0.</p>\",\"PeriodicalId\":53218,\"journal\":{\"name\":\"Marine Life Science & Technology\",\"volume\":\"6 3\",\"pages\":\"425-441\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358372/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Life Science & Technology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42995-024-00242-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-024-00242-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Comparative analysis of 12 water lily plastid genomes reveals genomic divergence and evolutionary relationships in early flowering plants.
The aquatic plant Nymphaea, a model genus of the early flowering plant lineage Nymphaeales and family Nymphaeaceae, has been extensively studied. However, the availability of chloroplast genome data for this genus is incomplete, and phylogenetic relationships within the order Nymphaeales remain controversial. In this study, 12 chloroplast genomes of Nymphaea were assembled and analyzed for the first time. These genomes were 158,290-160,042 bp in size and contained 113 non-repeat genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. We also report on codon usage, RNA editing sites, microsatellite structures, and new repetitive sequences in this genus. Comparative genomics revealed that expansion and contraction of IR regions can lead to changes in the gene numbers. Additionally, it was observed that the highly variable regions of the chloroplast genome were mainly located in intergenic regions. Furthermore, the phylogenetic tree showed the order Nymphaeales was divided into three families, and the genus Nymphaea can be divided into five (or three) subgenera, with the subgenus Nymphaea being the oldest. The divergence times of nymphaealean taxa were analyzed, with origins of the order Nymphaeales and family Nymphaeaceae being about 194 and 131 million years, respectively. The results of the phylogenetic analysis and estimated divergence times will be useful for future evolutionary studies of basal angiosperm lineages.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-024-00242-0.
期刊介绍:
Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats.
The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.