Sonja Kunz , Yao Meng , Holger Schneider , Laura Brunnenkant , Michaela Höhne , Tim Kühnle , Martin Reincke , Marily Theodoropoulou , Martin Bidlingmaier
{"title":"通过 LC-MS/MS 对醛固酮、皮质醇和可的松进行快速可靠的定量,以研究原代细胞培养物中 11β- 羟类固醇脱氢酶的活性。","authors":"Sonja Kunz , Yao Meng , Holger Schneider , Laura Brunnenkant , Michaela Höhne , Tim Kühnle , Martin Reincke , Marily Theodoropoulou , Martin Bidlingmaier","doi":"10.1016/j.jsbmb.2024.106610","DOIUrl":null,"url":null,"abstract":"<div><p>Cell culture experiments can support characterization of enzymatic activities in healthy and tumorous human tissues. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) enables simultaneous measurement of several steroids from a single sample, facilitating analysis of molecular pathways involved in steroid biosynthesis. We developed a reliable but fast method for quantification of cortisol, cortisone and aldosterone in cell culture supernatant. Validation, including investigation of matrix-matched calibration, was performed for two different cell types. Utility of the method was demonstrated in the study of 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) activity under conditions of glucocorticoid and mineralocorticoid excess in different cell types. Aldosterone, cortisol and cortisone were extracted by liquid-liquid extraction (LLE) with methyl <em>tert</em>-butyl ether from 1 mL of cell culture supernatant. Steroids were separated on a Kinetex biphenyl column (50 ×2.1 mm, 2.6 µm) with gradient elution of water and methanol containing 2 mM ammonium format and analysed in multiple reaction monitoring mode after positive electrospray ionization. Application of the method included cell culture experiments with two different primary cell types, human coronary artery smooth muscle cells (HCSMC) and human coronary artery endothelial cells (EC). Cells were treated with different concentrations of cortisol, aldosterone and mifepristone, a glucocorticoid receptor antagonist and quantitative PCR was performed. The method exhibits high precision (CV ≤ 6 %) and accuracy (deviation from nominal concentration ≤ 6 %) for concentrations above the limit of quantification (LoQ) which is 0.11, 0.56 and 0.69 nmol/L for aldosterone, cortisone and cortisol, respectively. Calibration curves did not differ when prepared in media or solvent. The method enabled us to confirm activity of HSD11B2 and concentration dependent conversion of cortisol to cortisone in HCSMC (median conversion ratio at 140 nM cortisol = 1.46 %). In contrast we did not observe any HSD11B2 activity in EC. Neither addition of high aldosterone, nor addition of 1 µM mifepristone had impact on glucocorticoid concentrations. Quantitative PCR revealed expression of <em>HSD11B1</em> and <em>HSD11B2</em> in HCSMC but not in EC. We present a fast and reliable method for quantification of cortisol, cortisone and aldosterone in cell culture supernatants. The method enabled us to study HSD11B2 activity in two different cell types and will support future experiments investigating mechanisms of target organ damage in conditions of glucocorticoid and mineralocorticoid excess.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960076024001584/pdfft?md5=300ef982d4c5616a5ed3c033a7f48aae&pid=1-s2.0-S0960076024001584-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fast and reliable quantification of aldosterone, cortisol and cortisone via LC-MS/MS to study 11β-hydroxysteroid dehydrogenase activities in primary cell cultures\",\"authors\":\"Sonja Kunz , Yao Meng , Holger Schneider , Laura Brunnenkant , Michaela Höhne , Tim Kühnle , Martin Reincke , Marily Theodoropoulou , Martin Bidlingmaier\",\"doi\":\"10.1016/j.jsbmb.2024.106610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cell culture experiments can support characterization of enzymatic activities in healthy and tumorous human tissues. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) enables simultaneous measurement of several steroids from a single sample, facilitating analysis of molecular pathways involved in steroid biosynthesis. We developed a reliable but fast method for quantification of cortisol, cortisone and aldosterone in cell culture supernatant. Validation, including investigation of matrix-matched calibration, was performed for two different cell types. Utility of the method was demonstrated in the study of 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) activity under conditions of glucocorticoid and mineralocorticoid excess in different cell types. Aldosterone, cortisol and cortisone were extracted by liquid-liquid extraction (LLE) with methyl <em>tert</em>-butyl ether from 1 mL of cell culture supernatant. Steroids were separated on a Kinetex biphenyl column (50 ×2.1 mm, 2.6 µm) with gradient elution of water and methanol containing 2 mM ammonium format and analysed in multiple reaction monitoring mode after positive electrospray ionization. Application of the method included cell culture experiments with two different primary cell types, human coronary artery smooth muscle cells (HCSMC) and human coronary artery endothelial cells (EC). Cells were treated with different concentrations of cortisol, aldosterone and mifepristone, a glucocorticoid receptor antagonist and quantitative PCR was performed. The method exhibits high precision (CV ≤ 6 %) and accuracy (deviation from nominal concentration ≤ 6 %) for concentrations above the limit of quantification (LoQ) which is 0.11, 0.56 and 0.69 nmol/L for aldosterone, cortisone and cortisol, respectively. Calibration curves did not differ when prepared in media or solvent. The method enabled us to confirm activity of HSD11B2 and concentration dependent conversion of cortisol to cortisone in HCSMC (median conversion ratio at 140 nM cortisol = 1.46 %). In contrast we did not observe any HSD11B2 activity in EC. Neither addition of high aldosterone, nor addition of 1 µM mifepristone had impact on glucocorticoid concentrations. Quantitative PCR revealed expression of <em>HSD11B1</em> and <em>HSD11B2</em> in HCSMC but not in EC. We present a fast and reliable method for quantification of cortisol, cortisone and aldosterone in cell culture supernatants. The method enabled us to study HSD11B2 activity in two different cell types and will support future experiments investigating mechanisms of target organ damage in conditions of glucocorticoid and mineralocorticoid excess.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0960076024001584/pdfft?md5=300ef982d4c5616a5ed3c033a7f48aae&pid=1-s2.0-S0960076024001584-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960076024001584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960076024001584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Fast and reliable quantification of aldosterone, cortisol and cortisone via LC-MS/MS to study 11β-hydroxysteroid dehydrogenase activities in primary cell cultures
Cell culture experiments can support characterization of enzymatic activities in healthy and tumorous human tissues. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) enables simultaneous measurement of several steroids from a single sample, facilitating analysis of molecular pathways involved in steroid biosynthesis. We developed a reliable but fast method for quantification of cortisol, cortisone and aldosterone in cell culture supernatant. Validation, including investigation of matrix-matched calibration, was performed for two different cell types. Utility of the method was demonstrated in the study of 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) activity under conditions of glucocorticoid and mineralocorticoid excess in different cell types. Aldosterone, cortisol and cortisone were extracted by liquid-liquid extraction (LLE) with methyl tert-butyl ether from 1 mL of cell culture supernatant. Steroids were separated on a Kinetex biphenyl column (50 ×2.1 mm, 2.6 µm) with gradient elution of water and methanol containing 2 mM ammonium format and analysed in multiple reaction monitoring mode after positive electrospray ionization. Application of the method included cell culture experiments with two different primary cell types, human coronary artery smooth muscle cells (HCSMC) and human coronary artery endothelial cells (EC). Cells were treated with different concentrations of cortisol, aldosterone and mifepristone, a glucocorticoid receptor antagonist and quantitative PCR was performed. The method exhibits high precision (CV ≤ 6 %) and accuracy (deviation from nominal concentration ≤ 6 %) for concentrations above the limit of quantification (LoQ) which is 0.11, 0.56 and 0.69 nmol/L for aldosterone, cortisone and cortisol, respectively. Calibration curves did not differ when prepared in media or solvent. The method enabled us to confirm activity of HSD11B2 and concentration dependent conversion of cortisol to cortisone in HCSMC (median conversion ratio at 140 nM cortisol = 1.46 %). In contrast we did not observe any HSD11B2 activity in EC. Neither addition of high aldosterone, nor addition of 1 µM mifepristone had impact on glucocorticoid concentrations. Quantitative PCR revealed expression of HSD11B1 and HSD11B2 in HCSMC but not in EC. We present a fast and reliable method for quantification of cortisol, cortisone and aldosterone in cell culture supernatants. The method enabled us to study HSD11B2 activity in two different cell types and will support future experiments investigating mechanisms of target organ damage in conditions of glucocorticoid and mineralocorticoid excess.