给我们所有人上了一课:霍奇金-凯恩斯离子通量长孔模型。

IF 1.7 4区 教育学 Q2 EDUCATION, SCIENTIFIC DISCIPLINES
Advances in Physiology Education Pub Date : 2024-12-01 Epub Date: 2024-08-29 DOI:10.1152/advan.00124.2024
Amy J Hopper, Angus M Brown
{"title":"给我们所有人上了一课:霍奇金-凯恩斯离子通量长孔模型。","authors":"Amy J Hopper, Angus M Brown","doi":"10.1152/advan.00124.2024","DOIUrl":null,"url":null,"abstract":"<p><p>In this article we analyze the classic Hodgkin and Keynes 1955 paper describing investigations of the independence principle, with the expectation that there is much students and educators can learn from such exercises, most notably how the authors applied their diverse skill set to tackling the numerous obstacles that the study presented. The paper encompasses three of the physiology core concepts, cell membranes, flow down gradients, and scientific reasoning, which were recently assigned to the classes The Biological World, The Physical World, and Ways of Looking at the World, respectively. Thus, analysis of such a paper illuminates the relationships that exist between distinct concepts and encourages a holistic approach to understanding physiology. In-depth analysis of the paper allows us to follow the authors' thought processes from their realization that previous methods lacked the resolution to answer a fundamental question relating to ion movement across membranes to the application of a more sensitive technique and ultimately the development of a novel model describing ion flux. This paper was the culmination of work started in the mid-1930s, strongly supported the ionic theory of nervous conduction proposed by Hodgkin and Huxley, and predicted the presence of ion channels as narrow pores through which ions move sequentially four decades before these features were convincingly demonstrated.<b>NEW & NOTEWORTHY</b> We describe in detail Hodgkin and Keynes' investigation of the independence principle. It is our expectation that students and educators can benefit from following the thought processes applied by the authors as they navigated the complexities of experimental design and data analysis, culminating in development of a model whose elegant simplicity was convincing evidence of narrow membrane-bound pores, ion channels, that were the conduit for transmembrane ion movement.</p>","PeriodicalId":50852,"journal":{"name":"Advances in Physiology Education","volume":" ","pages":"790-798"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lesson for us all: the Hodgkin-Keynes long pore model of ion flux.\",\"authors\":\"Amy J Hopper, Angus M Brown\",\"doi\":\"10.1152/advan.00124.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article we analyze the classic Hodgkin and Keynes 1955 paper describing investigations of the independence principle, with the expectation that there is much students and educators can learn from such exercises, most notably how the authors applied their diverse skill set to tackling the numerous obstacles that the study presented. The paper encompasses three of the physiology core concepts, cell membranes, flow down gradients, and scientific reasoning, which were recently assigned to the classes The Biological World, The Physical World, and Ways of Looking at the World, respectively. Thus, analysis of such a paper illuminates the relationships that exist between distinct concepts and encourages a holistic approach to understanding physiology. In-depth analysis of the paper allows us to follow the authors' thought processes from their realization that previous methods lacked the resolution to answer a fundamental question relating to ion movement across membranes to the application of a more sensitive technique and ultimately the development of a novel model describing ion flux. This paper was the culmination of work started in the mid-1930s, strongly supported the ionic theory of nervous conduction proposed by Hodgkin and Huxley, and predicted the presence of ion channels as narrow pores through which ions move sequentially four decades before these features were convincingly demonstrated.<b>NEW & NOTEWORTHY</b> We describe in detail Hodgkin and Keynes' investigation of the independence principle. It is our expectation that students and educators can benefit from following the thought processes applied by the authors as they navigated the complexities of experimental design and data analysis, culminating in development of a model whose elegant simplicity was convincing evidence of narrow membrane-bound pores, ion channels, that were the conduit for transmembrane ion movement.</p>\",\"PeriodicalId\":50852,\"journal\":{\"name\":\"Advances in Physiology Education\",\"volume\":\" \",\"pages\":\"790-798\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physiology Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1152/advan.00124.2024\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physiology Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1152/advan.00124.2024","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们分析了霍奇金和凯恩斯 1955 年发表的描述独立原理研究的经典论文,希望学生和教育工作者能从这类练习中学到很多东西,最值得注意的是作者是如何运用他们的各种技能来解决研究中遇到的无数障碍的。这篇论文包含三个生理学核心概念:细胞膜、顺梯度流动和科学推理,这三个概念最近分别被分配到《生物世界》、《物理世界》和《观察世界的方法》课程中。因此,对这样一篇论文的分析可以揭示不同概念之间的关系,并鼓励以整体方法来理解生理学。通过对论文的深入分析,我们可以了解作者的思维过程,从他们意识到以前的方法缺乏分辨率,无法回答与离子跨膜运动有关的基本问题,到应用更灵敏的技术,并最终开发出描述离子通量的新模型。这篇论文是 20 世纪 30 年代中期开始的工作的结晶,有力地支持了霍奇金和赫胥黎提出的神经传导离子理论,并预测了离子通道作为离子依次通过的狭窄孔道的存在,这比这些特征得到令人信服的证实早了 40 年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A lesson for us all: the Hodgkin-Keynes long pore model of ion flux.

In this article we analyze the classic Hodgkin and Keynes 1955 paper describing investigations of the independence principle, with the expectation that there is much students and educators can learn from such exercises, most notably how the authors applied their diverse skill set to tackling the numerous obstacles that the study presented. The paper encompasses three of the physiology core concepts, cell membranes, flow down gradients, and scientific reasoning, which were recently assigned to the classes The Biological World, The Physical World, and Ways of Looking at the World, respectively. Thus, analysis of such a paper illuminates the relationships that exist between distinct concepts and encourages a holistic approach to understanding physiology. In-depth analysis of the paper allows us to follow the authors' thought processes from their realization that previous methods lacked the resolution to answer a fundamental question relating to ion movement across membranes to the application of a more sensitive technique and ultimately the development of a novel model describing ion flux. This paper was the culmination of work started in the mid-1930s, strongly supported the ionic theory of nervous conduction proposed by Hodgkin and Huxley, and predicted the presence of ion channels as narrow pores through which ions move sequentially four decades before these features were convincingly demonstrated.NEW & NOTEWORTHY We describe in detail Hodgkin and Keynes' investigation of the independence principle. It is our expectation that students and educators can benefit from following the thought processes applied by the authors as they navigated the complexities of experimental design and data analysis, culminating in development of a model whose elegant simplicity was convincing evidence of narrow membrane-bound pores, ion channels, that were the conduit for transmembrane ion movement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
19.00%
发文量
100
审稿时长
>12 weeks
期刊介绍: Advances in Physiology Education promotes and disseminates educational scholarship in order to enhance teaching and learning of physiology, neuroscience and pathophysiology. The journal publishes peer-reviewed descriptions of innovations that improve teaching in the classroom and laboratory, essays on education, and review articles based on our current understanding of physiological mechanisms. Submissions that evaluate new technologies for teaching and research, and educational pedagogy, are especially welcome. The audience for the journal includes educators at all levels: K–12, undergraduate, graduate, and professional programs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信