Yuliya Kurlishchuk, Anita Cindric Vranesic, Marco Jessen, Alexandra Kipping, Christin Ritter, KyungMok Kim, Paul Cramer, Björn von Eyss
{"title":"JUN的非典型抑制功能可抑制YAP的活性和肝癌的生长。","authors":"Yuliya Kurlishchuk, Anita Cindric Vranesic, Marco Jessen, Alexandra Kipping, Christin Ritter, KyungMok Kim, Paul Cramer, Björn von Eyss","doi":"10.1038/s44318-024-00188-0","DOIUrl":null,"url":null,"abstract":"<p><p>Yes-associated protein (YAP) and its homolog, transcriptional coactivator with PDZ-binding motif (TAZ), are the main transcriptional downstream effectors of the Hippo pathway. Decreased Hippo pathway activity leads to nuclear translocation of YAP/TAZ where they interact with TEAD transcription factors to induce target gene expression. Unrestrained YAP/TAZ activity can lead to excessive growth and tumor formation in a short time, underscoring the evolutionary need for tight control of these two transcriptional coactivators. Here, we report that the AP-1 component JUN acts as specific repressor of YAP/TAZ at joint target sites to decrease YAP/TAZ activity. This function of JUN is independent of its heterodimeric AP-1 partner FOS and the canonical AP-1 function. Since expression of JUN is itself induced by YAP/TAZ, our work identifies a JUN-dependent negative feedback loop that buffers YAP/TAZ activity at joint genomic sites. This negative feedback loop gets disrupted in liver cancer to unlock the full oncogenic potential of YAP/TAZ. Our results thus demonstrate an additional layer of control for the interplay of YAP/TAZ and AP-1.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480203/pdf/","citationCount":"0","resultStr":"{\"title\":\"A non-canonical repressor function of JUN restrains YAP activity and liver cancer growth.\",\"authors\":\"Yuliya Kurlishchuk, Anita Cindric Vranesic, Marco Jessen, Alexandra Kipping, Christin Ritter, KyungMok Kim, Paul Cramer, Björn von Eyss\",\"doi\":\"10.1038/s44318-024-00188-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Yes-associated protein (YAP) and its homolog, transcriptional coactivator with PDZ-binding motif (TAZ), are the main transcriptional downstream effectors of the Hippo pathway. Decreased Hippo pathway activity leads to nuclear translocation of YAP/TAZ where they interact with TEAD transcription factors to induce target gene expression. Unrestrained YAP/TAZ activity can lead to excessive growth and tumor formation in a short time, underscoring the evolutionary need for tight control of these two transcriptional coactivators. Here, we report that the AP-1 component JUN acts as specific repressor of YAP/TAZ at joint target sites to decrease YAP/TAZ activity. This function of JUN is independent of its heterodimeric AP-1 partner FOS and the canonical AP-1 function. Since expression of JUN is itself induced by YAP/TAZ, our work identifies a JUN-dependent negative feedback loop that buffers YAP/TAZ activity at joint genomic sites. This negative feedback loop gets disrupted in liver cancer to unlock the full oncogenic potential of YAP/TAZ. Our results thus demonstrate an additional layer of control for the interplay of YAP/TAZ and AP-1.</p>\",\"PeriodicalId\":50533,\"journal\":{\"name\":\"EMBO Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480203/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-024-00188-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00188-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A non-canonical repressor function of JUN restrains YAP activity and liver cancer growth.
Yes-associated protein (YAP) and its homolog, transcriptional coactivator with PDZ-binding motif (TAZ), are the main transcriptional downstream effectors of the Hippo pathway. Decreased Hippo pathway activity leads to nuclear translocation of YAP/TAZ where they interact with TEAD transcription factors to induce target gene expression. Unrestrained YAP/TAZ activity can lead to excessive growth and tumor formation in a short time, underscoring the evolutionary need for tight control of these two transcriptional coactivators. Here, we report that the AP-1 component JUN acts as specific repressor of YAP/TAZ at joint target sites to decrease YAP/TAZ activity. This function of JUN is independent of its heterodimeric AP-1 partner FOS and the canonical AP-1 function. Since expression of JUN is itself induced by YAP/TAZ, our work identifies a JUN-dependent negative feedback loop that buffers YAP/TAZ activity at joint genomic sites. This negative feedback loop gets disrupted in liver cancer to unlock the full oncogenic potential of YAP/TAZ. Our results thus demonstrate an additional layer of control for the interplay of YAP/TAZ and AP-1.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.