验证自我报告的驾驶行为是实际驾驶速度的决定因素。

IF 2 3区 工程技术 Q3 ENGINEERING, INDUSTRIAL
Pete Thomas, Ruth Welsh, Andrew Morris, Steve Reed
{"title":"验证自我报告的驾驶行为是实际驾驶速度的决定因素。","authors":"Pete Thomas, Ruth Welsh, Andrew Morris, Steve Reed","doi":"10.1080/00140139.2024.2395419","DOIUrl":null,"url":null,"abstract":"<p><p>Self-reported driver behaviour has long been a tool used by road safety researchers to classify drivers and to evaluate the impact of interventions yet the relationship with real-world driving is challenging to validate due to the need for extensive, detailed observations of normal driving. This study examines this association by applying the large UDRIVE naturalistic driving study data involving 96 car drivers, comprising 131,462 trips and 1,459,110 km travelled over a duration of 32,096 hours, to compare individual questions and composite indicators based on the Driver Behaviour Questionnaire with real world driving. Self-reported speed behaviour was compared to the measured values under urban and highway conditions. Generalised Linear Mixed Models were developed to examine the relationships between the observed speed behaviours with DBQ errors and violations scores in conjunction with traffic and environmental factors. Drivers' self-reported data on speed selection seldom aligned with their real-world behaviour and there were no meaningful differences between many of the response categories. The DBQ violations and errors scales showed a highly significant correlation with driving speed indicators however they had a low explanatory power compared to other traffic situational and driving factors. Overall, the study highlights the need to validate self-reported driving data against the accuracy and relevance to real-world driving.</p>","PeriodicalId":50503,"journal":{"name":"Ergonomics","volume":" ","pages":"1-15"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validating self-reported driving behaviours as determinants of real-world driving speeds.\",\"authors\":\"Pete Thomas, Ruth Welsh, Andrew Morris, Steve Reed\",\"doi\":\"10.1080/00140139.2024.2395419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Self-reported driver behaviour has long been a tool used by road safety researchers to classify drivers and to evaluate the impact of interventions yet the relationship with real-world driving is challenging to validate due to the need for extensive, detailed observations of normal driving. This study examines this association by applying the large UDRIVE naturalistic driving study data involving 96 car drivers, comprising 131,462 trips and 1,459,110 km travelled over a duration of 32,096 hours, to compare individual questions and composite indicators based on the Driver Behaviour Questionnaire with real world driving. Self-reported speed behaviour was compared to the measured values under urban and highway conditions. Generalised Linear Mixed Models were developed to examine the relationships between the observed speed behaviours with DBQ errors and violations scores in conjunction with traffic and environmental factors. Drivers' self-reported data on speed selection seldom aligned with their real-world behaviour and there were no meaningful differences between many of the response categories. The DBQ violations and errors scales showed a highly significant correlation with driving speed indicators however they had a low explanatory power compared to other traffic situational and driving factors. Overall, the study highlights the need to validate self-reported driving data against the accuracy and relevance to real-world driving.</p>\",\"PeriodicalId\":50503,\"journal\":{\"name\":\"Ergonomics\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergonomics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00140139.2024.2395419\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2024.2395419","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,驾驶员自我报告行为一直是道路安全研究人员用于对驾驶员进行分类和评估干预措施影响的工具,但由于需要对正常驾驶进行广泛、详细的观察,因此验证与实际驾驶之间的关系具有挑战性。本研究通过使用 UDRIVE 自然驾驶研究的大量数据(涉及 96 名汽车驾驶员,包括 131,462 次出行和 1,459,110 公里行驶,历时 32,096 小时)来检验这种关联,并将基于驾驶员行为问卷的单个问题和综合指标与实际驾驶进行比较。在城市和高速公路条件下,将自我报告的速度行为与测量值进行了比较。建立了广义线性混合模型,以检验观察到的速度行为与 DBQ 错误和违规分数之间的关系,以及交通和环境因素。驾驶员自我报告的速度选择数据很少与他们的实际行为相吻合,而且许多反应类别之间没有有意义的差异。DBQ 违规和失误量表与驾驶速度指标有非常显著的相关性,但与其他交通环境和驾驶因素相比,其解释力较低。总之,该研究强调了验证自我报告驾驶数据的准确性和与真实世界驾驶的相关性的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validating self-reported driving behaviours as determinants of real-world driving speeds.

Self-reported driver behaviour has long been a tool used by road safety researchers to classify drivers and to evaluate the impact of interventions yet the relationship with real-world driving is challenging to validate due to the need for extensive, detailed observations of normal driving. This study examines this association by applying the large UDRIVE naturalistic driving study data involving 96 car drivers, comprising 131,462 trips and 1,459,110 km travelled over a duration of 32,096 hours, to compare individual questions and composite indicators based on the Driver Behaviour Questionnaire with real world driving. Self-reported speed behaviour was compared to the measured values under urban and highway conditions. Generalised Linear Mixed Models were developed to examine the relationships between the observed speed behaviours with DBQ errors and violations scores in conjunction with traffic and environmental factors. Drivers' self-reported data on speed selection seldom aligned with their real-world behaviour and there were no meaningful differences between many of the response categories. The DBQ violations and errors scales showed a highly significant correlation with driving speed indicators however they had a low explanatory power compared to other traffic situational and driving factors. Overall, the study highlights the need to validate self-reported driving data against the accuracy and relevance to real-world driving.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ergonomics
Ergonomics 工程技术-工程:工业
CiteScore
4.60
自引率
12.50%
发文量
147
审稿时长
6 months
期刊介绍: Ergonomics, also known as human factors, is the scientific discipline that seeks to understand and improve human interactions with products, equipment, environments and systems. Drawing upon human biology, psychology, engineering and design, Ergonomics aims to develop and apply knowledge and techniques to optimise system performance, whilst protecting the health, safety and well-being of individuals involved. The attention of ergonomics extends across work, leisure and other aspects of our daily lives. The journal Ergonomics is an international refereed publication, with a 60 year tradition of disseminating high quality research. Original submissions, both theoretical and applied, are invited from across the subject, including physical, cognitive, organisational and environmental ergonomics. Papers reporting the findings of research from cognate disciplines are also welcome, where these contribute to understanding equipment, tasks, jobs, systems and environments and the corresponding needs, abilities and limitations of people. All published research articles in this journal have undergone rigorous peer review, based on initial editor screening and anonymous refereeing by independent expert referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信